
perlfaq5 - Files and Formats ($Revision: 1.31 $, $Date: 2004/02/07 04:29:50 $)

This section deals with I/O and the "f" issues: filehandles, flushing, formats, and footers.

Perl does not support truly unbuffered output (except insofar as you can
), although it does support is "command buffering", in which a physical write is performed after

every output command.

The C standard I/O library (stdio) normally buffers characters sent to devices so that there isn't a
system call for each byte. In most stdio implementations, the type of output buffering and the size of
the buffer varies according to the type of device. Perl's print() and write() functions normally buffer
output, while syswrite() bypasses buffering all together.

If you want your output to be sent immediately when you execute print() or write() (for instance, for
some network protocols), you must set the handle's autoflush flag. This flag is the Perl variable $| and
when it is set to a true value, Perl will flush the handle's buffer after each print() or write(). Setting $|
affects buffering only for the currently selected default file handle. You choose this handle with the
one argument select() call (see and ).

Use select() to choose the desired handle, then set its per-filehandle variables.

Some idioms can handle this in a single statement:

Some modules offer object-oriented access to handles and their variables, although they may be
overkill if this is the only thing you do with them. You can use IO::Handle:

or IO::Socket:

Use the Tie::File module, which is included in the standard distribution since Perl 5.8.0.

One fairly efficient way is to count newlines in the file. The following program uses a feature of tr///, as
documented in . If your text file doesn't end with a newline, then it's not really a proper text file,

Perl version 5.8.6 documentation - perlfaq5

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

How do I flush/unbuffer an output filehandle? Why must I do this?

How do I change one line in a file/delete a line in a file/insert a line in the middle of a file/append
to the beginning of a file?

How do I count the number of lines in a file?

syswrite(OUT, $char,
1)

"$|" in perlvar "select" in perlfunc

perlop

$old_fh = select(OUTPUT_HANDLE);
$| = 1;
select($old_fh);

select((select(OUTPUT_HANDLE), $| = 1)[0]);

$| = 1, select $_ for select OUTPUT_HANDLE;

use IO::Handle;
open(DEV, ">/dev/printer"); # but is this?
DEV->autoflush(1);

use IO::Socket; # this one is kinda a pipe?
my $sock = IO::Socket::INET->new( ’www.example.com:80’ ) ;

$sock->autoflush();



so this may report one fewer line than you expect.

This assumes no funny games with newline translations.

sets the value of Perl's variable, which in turn affects the behavior of ; see for more
details. By modifying the appropriate variables directly, you can get the same behavior within a larger
program. For example:

This block modifies all the files in the current directory, leaving a backup of the original data from
each file in a new file.

Use the File::Temp module, see for more information.

The File::Temp has been a standard module since Perl 5.6.1. If you don't have a modern enough Perl
installed, use the class method from the IO::File module to get a filehandle opened for
reading and writing. Use it if you don't need to know the file's name:

If you're committed to creating a temporary file by hand, use the process ID and/or the current
time-value. If you need to have many temporary files in one process, use a counter:

Perl version 5.8.6 documentation - perlfaq5

Page 2http://perldoc.perl.org

$lines = 0;
open(FILE, $filename) or die "Can’t open ‘$filename’: $!";
while (sysread FILE, $buffer, 4096) {

$lines += ($buffer =~ tr/\n//);
}
close FILE;

# ...
{

local($^I, @ARGV) = (’.orig’, glob("*.c"));
while (<>) {

if ($. == 1) {
print "This line should appear at the top of each file\n";

}
s/\b(p)earl\b/${1}erl/i; # Correct typos, preserving case
print;
close ARGV if eof; # Reset $.

}
}
# $^I and @ARGV return to their old values here

use File::Temp qw/ tempfile tempdir /;

$dir = tempdir( CLEANUP => 1 );
($fh, $filename) = tempfile( DIR => $dir );

# or if you don’t need to know the filename

$fh = tempfile( DIR => $dir );

use IO::File;
$fh = IO::File->new_tmpfile()

or die "Unable to make new temporary file: $!";

How can I use Perl's -i option from within a program?

How do I make a temporary file name?

-i $^I <>

.c
.c.orig

new_tmpfile

perlrun

File::Temp



The most efficient way is using and . This is faster than using when taking
many, many strings. It is slower for just a few.

Here is a sample chunk of code to break up and put back together again some fixed-format input
lines, in this case from the output of a normal, Berkeley-style ps:

We've used a hash slice in order to easily handle the fields of each row. Storing the keys in an array
means it's easy to operate on them as a group or loop over them with for. It also avoids polluting the
program with global variables and using symbolic references.

As of perl5.6, open() autovivifies file and directory handles as references if you pass it an uninitialized
scalar variable. You can then pass these references just like any other scalar, and use them in the
place of named handles.

Perl version 5.8.6 documentation - perlfaq5

Page 3http://perldoc.perl.org

BEGIN {
use Fcntl;
my $temp_dir = -d ’/tmp’ ? ’/tmp’ : $ENV{TMPDIR} || $ENV{TEMP};
my $base_name = sprintf("%s/%d-%d-0000", $temp_dir, $$, time());
sub temp_file {

local *FH;
my $count = 0;
until (defined(fileno(FH)) || $count++ > 100) {

$base_name =~ s/-(\d+)$/"-" . (1 + $1)/e;
# O_EXCL is required for security reasons.
sysopen(FH, $base_name, O_WRONLY|O_EXCL|O_CREAT);

}
if (defined(fileno(FH))

return (*FH, $base_name);
} else {

return ();
}

}
}

# sample input line:
# 15158 p5 T 0:00 perl /home/tchrist/scripts/now-what
my $PS_T = ’A6 A4 A7 A5 A*’;
open my $ps, ’-|’, ’ps’;
print scalar <$ps>;
my @fields = qw( pid tt stat time command );
while (<$ps>) {

my %process;
@process{@fields} = unpack($PS_T, $_);

for my $field ( @fields ) {
print "$field: <$process{$field}>\n";

}
print ’line=’, pack($PS_T, @process{@fields} ), "\n";

}

open my $fh, $file_name;

open local $fh, $file_name;

How can I manipulate fixed-record-length files?

How can I make a filehandle local to a subroutine? How do I pass filehandles between
subroutines? How do I make an array of filehandles?

pack() unpack() substr()



Before perl5.6, you had to deal with various typeglob idioms which you may see in older code.

If you want to create many anonymous handles, you should check out the Symbol or IO::Handle
modules.

An indirect filehandle is using something other than a symbol in a place that a filehandle is expected.
Here are ways to get indirect filehandles:

Or, you can use the method from one of the IO::* modules to create an anonymous filehandle,
store that in a scalar variable, and use it as though it were a normal filehandle.

Then use any of those as you would a normal filehandle. Anywhere that Perl is expecting a filehandle,
an indirect filehandle may be used instead. An indirect filehandle is just a scalar variable that contains
a filehandle. Functions like , , , or the diamond operator will accept either a
named filehandle or a scalar variable containing one:

If you're passing a filehandle to a function, you can write the function in two ways:

Or it can localize a typeglob and use the filehandle directly:

Perl version 5.8.6 documentation - perlfaq5

Page 4http://perldoc.perl.org

print $fh "Hello World!\n";

process_file( $fh );

open FILE, "> $filename";
process_typeglob( *FILE );
process_reference( \*FILE );

sub process_typeglob { local *FH = shift; print FH "Typeglob!" }
sub process_reference { local $fh = shift; print $fh "Reference!" }

$fh = SOME_FH; # bareword is strict-subs hostile
$fh = "SOME_FH"; # strict-refs hostile; same package only
$fh = *SOME_FH; # typeglob
$fh = \*SOME_FH; # ref to typeglob (bless-able)
$fh = *SOME_FH{IO}; # blessed IO::Handle from *SOME_FH typeglob

use IO::Handle; # 5.004 or higher
$fh = IO::Handle->new();

($ifh, $ofh, $efh) = (*STDIN, *STDOUT, *STDERR);
print $ofh "Type it: ";
$got = <$ifh>
print $efh "What was that: $got";

sub accept_fh {
my $fh = shift;
print $fh "Sending to indirect filehandle\n";

}

sub accept_fh {
local *FH = shift;
print FH "Sending to localized filehandle\n";

}

How can I use a filehandle indirectly?

new

print open seek <FH>



Both styles work with either objects or typeglobs of real filehandles. (They might also work with strings
under some circumstances, but this is risky.)

In the examples above, we assigned the filehandle to a scalar variable before using it. That is
because only simple scalar variables, not expressions or subscripts of hashes or arrays, can be used
with built-ins like , , or the diamond operator. Using something other than a simple
scalar variable as a filehandle is illegal and won't even compile:

With and , you get around this by using a block and an expression where you would
place the filehandle:

That block is a proper block like any other, so you can put more complicated code there. This sends
the message out to one of two places:

This approach of treating and like object methods calls doesn't work for the diamond
operator. That's because it's a real operator, not just a function with a comma-less argument.
Assuming you've been storing typeglobs in your structure as we did above, you can use the built-in
function named to read a record just as does. Given the initialization shown above for
@fd, this would work, but only because readline() requires a typeglob. It doesn't work with objects or
strings, which might be a bug we haven't fixed yet.

Let it be noted that the flakiness of indirect filehandles is not related to whether they're strings,
typeglobs, objects, or anything else. It's the syntax of the fundamental operators. Playing the object
game doesn't help you at all here.

There's no builtin way to do this, but has a couple of techniques to make it possible for the
intrepid hacker.

See for an swrite() function.

This subroutine will add commas to your number:

Perl version 5.8.6 documentation - perlfaq5

Page 5http://perldoc.perl.org

accept_fh(*STDOUT);
accept_fh($handle);

@fd = (*STDIN, *STDOUT, *STDERR);
print $fd[1] "Type it: "; # WRONG
$got = <$fd[0]> # WRONG
print $fd[2] "What was that: $got"; # WRONG

print { $fd[1] } "funny stuff\n";
printf { $fd[1] } "Pity the poor %x.\n", 3_735_928_559;
# Pity the poor deadbeef.

$ok = -x "/bin/cat";
print { $ok ? $fd[1] : $fd[2] } "cat stat $ok\n";
print { $fd[ 1+ ($ok || 0) ] } "cat stat $ok\n";

$got = readline($fd[0]);

sub commify {
local $_ = shift;
1 while s/^([-+]?\d+)(\d{3})/$1,$2/;

print printf

print printf

print printf

readline <>

How can I set up a footer format to be used with write()?

How can I write() into a string?

How can I output my numbers with commas added?

perlform

"Accessing Formatting Internals" in perlform



This regex from Benjamin Goldberg will add commas to numbers:

It is easier to see with comments:

Use the <> (glob()) operator, documented in . Older versions of Perl require that you have a
shell installed that groks tildes. Recent perl versions have this feature built in. The File::KGlob module
(available from CPAN) gives more portable glob functionality.

Within Perl, you may use this directly:

Because you're using something like this, which truncates the file and gives you read-write
access:

Whoops. You should instead use this, which will fail if the file doesn't exist.

Using ">" always clobbers or creates. Using "<" never does either. The "+" doesn't change this.

Here are examples of many kinds of file opens. Those using sysopen() all assume

Perl version 5.8.6 documentation - perlfaq5

Page 6http://perldoc.perl.org

return $_;
}

s/(^[-+]?\d+?(?=(?>(?:\d{3})+)(?!\d))|\G\d{3}(?=\d))/$1,/g;

s/(
^[-+]? # beginning of number.
\d{1,3}? # first digits before first comma
(?= # followed by, (but not included in the match) :

(?>(?:\d{3})+) # some positive multiple of three digits.
(?!\d) # an *exact* multiple, not x * 3 + 1 or whatever.

)
| # or:
\G\d{3} # after the last group, get three digits
(?=\d) # but they have to have more digits after them.

)/$1,/xg;

$filename =~ s{
^ ~ # find a leading tilde
( # save this in $1

[^/] # a non-slash character
* # repeated 0 or more times (0 means me)

)
}{
$1

? (getpwnam($1))[7]
: ( $ENV{HOME} || $ENV{LOGDIR} )

}ex;

open(FH, "+> /path/name"); # WRONG (almost always)

open(FH, "+< /path/name"); # open for update

use Fcntl;

How can I translate tildes (~) in a filename?

How come when I open a file read-write it wipes it out?

perlfunc

then



To open file for reading:

To open file for writing, create new file if needed or else truncate old file:

To open file for writing, create new file, file must not exist:

To open file for appending, create if necessary:

To open file for appending, file must exist:

To open file for update, file must exist:

To open file for update, create file if necessary:

To open file for update, file must not exist:

To open a file without blocking, creating if necessary:

Be warned that neither creation nor deletion of files is guaranteed to be an atomic operation over
NFS. That is, two processes might both successfully create or unlink the same file! Therefore
O_EXCL isn't as exclusive as you might wish.

See also the new if you have it (new for 5.6).

The operator performs a globbing operation (see above). In Perl versions earlier than v5.6.0, the
internal glob() operator forks csh(1) to do the actual glob expansion, but csh can't handle more than
127 items and so gives the error message . People who installed tcsh

Perl version 5.8.6 documentation - perlfaq5

Page 7http://perldoc.perl.org

open(FH, "< $path") || die $!;
sysopen(FH, $path, O_RDONLY) || die $!;

open(FH, "> $path") || die $!;
sysopen(FH, $path, O_WRONLY|O_TRUNC|O_CREAT) || die $!;
sysopen(FH, $path, O_WRONLY|O_TRUNC|O_CREAT, 0666) || die $!;

sysopen(FH, $path, O_WRONLY|O_EXCL|O_CREAT) || die $!;
sysopen(FH, $path, O_WRONLY|O_EXCL|O_CREAT, 0666) || die $!;

open(FH, ">> $path") || die $!;
sysopen(FH, $path, O_WRONLY|O_APPEND|O_CREAT) || die $!;
sysopen(FH, $path, O_WRONLY|O_APPEND|O_CREAT, 0666) || die $!;

sysopen(FH, $path, O_WRONLY|O_APPEND) || die $!;

open(FH, "+< $path") || die $!;
sysopen(FH, $path, O_RDWR) || die $!;

sysopen(FH, $path, O_RDWR|O_CREAT) || die $!;
sysopen(FH, $path, O_RDWR|O_CREAT, 0666) || die $!;

sysopen(FH, $path, O_RDWR|O_EXCL|O_CREAT) || die $!;
sysopen(FH, $path, O_RDWR|O_EXCL|O_CREAT, 0666) || die $!;

sysopen(FH, "/foo/somefile", O_WRONLY|O_NDELAY|O_CREAT)
or die "can’t open /foo/somefile: $!":

perlopentut

Why do I sometimes get an "Argument list too long" when I use <*>?
<>

Argument list too long



as csh won't have this problem, but their users may be surprised by it.

To get around this, either upgrade to Perl v5.6.0 or later, do the glob yourself with readdir() and
patterns, or use a module like File::KGlob, one that doesn't use the shell to do globbing.

Due to the current implementation on some operating systems, when you use the glob() function or its
angle-bracket alias in a scalar context, you may cause a memory leak and/or unpredictable behavior.
It's best therefore to use glob() only in list context.

Normally perl ignores trailing blanks in filenames, and interprets certain leading characters (or a
trailing "|") to mean something special.

The three argument form of open() lets you specify the mode separately from the filename. The
open() function treats special mode characters and whitespace in the filename as literals

It may be a lot clearer to use sysopen(), though:

If your operating system supports a proper mv(1) utility or its functional equivalent, this works:

It may be more portable to use the File::Copy module instead. You just copy to the new file to the new
name (checking return values), then delete the old one. This isn't really the same semantically as a
rename(), which preserves meta-information like permissions, timestamps, inode info, etc.

Newer versions of File::Copy export a move() function.

Perl's builtin flock() function (see for details) will call flock(2) if that exists, fcntl(2) if it doesn't
(on perl version 5.004 and later), and lockf(3) if neither of the two previous system calls exists. On
some systems, it may even use a different form of native locking. Here are some gotchas with Perl's
flock():

1 Produces a fatal error if none of the three system calls (or their close equivalent) exists.

2 lockf(3) does not provide shared locking, and requires that the filehandle be open for writing
(or appending, or read/writing).

3 Some versions of flock() can't lock files over a network (e.g. on NFS file systems), so you'd
need to force the use of fcntl(2) when you build Perl. But even this is dubious at best. See the
flock entry of and the file in the source distribution for information on
building Perl to do this.

Two potentially non-obvious but traditional flock semantics are that it waits indefinitely until the
lock is granted, and that its locks are . Such discretionary locks are more
flexible, but offer fewer guarantees. This means that files locked with flock() may be modified
by programs that do not also use flock(). Cars that stop for red lights get on well with each

Perl version 5.8.6 documentation - perlfaq5

Page 8http://perldoc.perl.org

Is there a leak/bug in glob()?

How can I open a file with a leading ">" or trailing blanks?

How can I reliably rename a file?

How can I lock a file?

open FILE, "<", " file "; # filename is " file "
open FILE, ">", ">file"; # filename is ">file"

use Fcntl;
$badpath = "<<<something really wicked ";
sysopen (FH, $badpath, O_WRONLY | O_CREAT | O_TRUNC)

or die "can’t open $badpath: $!";

rename($old, $new) or system("mv", $old, $new);

perlfunc

perlfunc INSTALL

merely advisory



other, but not with cars that don't stop for red lights. See the perlport manpage, your port's
specific documentation, or your system-specific local manpages for details. It's best to assume
traditional behavior if you're writing portable programs. (If you're not, you should as always
feel perfectly free to write for your own system's idiosyncrasies (sometimes called "features").
Slavish adherence to portability concerns shouldn't get in the way of your getting your job
done.)

For more information on file locking, see also if you have it (new
for 5.6).

A common bit of code is this:

This is a classic race condition: you take two steps to do something which must be done in one.
That's why computer hardware provides an atomic test-and-set instruction. In theory, this "ought" to
work:

except that lamentably, file creation (and deletion) is not atomic over NFS, so this won't work (at least,
not every time) over the net. Various schemes involving link() have been suggested, but these tend to
involve busy-wait, which is also subdesirable.

Didn't anyone ever tell you web-page hit counters were useless? They don't count number of hits,
they're a waste of time, and they serve only to stroke the writer's vanity. It's better to pick a random
number; they're more realistic.

Anyway, this is what you can do if you can't help yourself.

Here's a much better web-page hit counter:

If the count doesn't impress your friends, then the code might. :-)

If you are on a system that correctly implements flock() and you use the example appending code
from "perldoc -f flock" everything will be OK even if the OS you are on doesn't implement append
mode correctly (if such a system exists.) So if you are happy to restrict yourself to OSs that implement
flock() (and that's not really much of a restriction) then that is what you should do.

Perl version 5.8.6 documentation - perlfaq5

Page 9http://perldoc.perl.org

"File Locking" in perlopentut

Why can't I just open(FH, ">file.lock")?

I still don't get locking. I just want to increment the number in the file. How can I do this?

All I want to do is append a small amount of text to the end of a file. Do I still have to use
locking?

NOT TO USE

sleep(3) while -e "file.lock"; # PLEASE DO NOT USE
open(LCK, "> file.lock"); # THIS BROKEN CODE

sysopen(FH, "file.lock", O_WRONLY|O_EXCL|O_CREAT)
or die "can’t open file.lock: $!";

use Fcntl qw(:DEFAULT :flock);
sysopen(FH, "numfile", O_RDWR|O_CREAT) or die "can’t open numfile:

$!";
flock(FH, LOCK_EX) or die "can’t flock numfile: $!";
$num = <FH> || 0;
seek(FH, 0, 0) or die "can’t rewind numfile: $!";
truncate(FH, 0) or die "can’t truncate numfile: $!";
(print FH $num+1, "\n") or die "can’t write numfile: $!";
close FH or die "can’t close numfile: $!";

$hits = int( (time() - 850_000_000) / rand(1_000) );



If you know you are only going to use a system that does correctly implement appending (i.e. not
Win32) then you can omit the seek() from the above code.

If you know you are only writing code to run on an OS and filesystem that does implement append
mode correctly (a local filesystem on a modern Unix for example), and you keep the file in
block-buffered mode and you write less than one buffer-full of output between each manual flushing of
the buffer then each bufferload is almost guaranteed to be written to the end of the file in one chunk
without getting intermingled with anyone else's output. You can also use the syswrite() function which
is simply a wrapper around your systems write(2) system call.

There is still a small theoretical chance that a signal will interrupt the system level write() operation
before completion. There is also a possibility that some STDIO implementations may call multiple
system level write()s even if the buffer was empty to start. There may be some systems where this
probability is reduced to zero.

If you're just trying to patch a binary, in many cases something as simple as this works:

However, if you have fixed sized records, then you might do something more like this:

Locking and error checking are left as an exercise for the reader. Don't forget them or you'll be quite
sorry.

If you want to retrieve the time at which the file was last read, written, or had its meta-data (owner,
etc) changed, you use the , , or file test operations as documented in . These retrieve
the age of the file (measured against the start-time of your program) in days as a floating point
number. Some platforms may not have all of these times. See for details. To retrieve the
"raw" time in seconds since the epoch, you would call the stat function, then use localtime(), gmtime(),
or POSIX::strftime() to convert this into human-readable form.

Here's an example:

If you prefer something more legible, use the File::stat module (part of the standard distribution in
version 5.004 and later):

Perl version 5.8.6 documentation - perlfaq5

Page 10http://perldoc.perl.org

How do I randomly update a binary file?

How do I get a file's timestamp in perl?

perl -i -pe ’s{window manager}{window mangler}g’ /usr/bin/emacs

$RECSIZE = 220; # size of record, in bytes
$recno = 37; # which record to update
open(FH, "+<somewhere") || die "can’t update somewhere: $!";
seek(FH, $recno * $RECSIZE, 0);
read(FH, $record, $RECSIZE) == $RECSIZE || die "can’t read record

$recno: $!";
# munge the record
seek(FH, -$RECSIZE, 1);
print FH $record;
close FH;

$write_secs = (stat($file))[9];
printf "file %s updated at %s\n", $file,

scalar localtime($write_secs);

# error checking left as an exercise for reader.
use File::stat;
use Time::localtime;
$date_string = ctime(stat($file)->mtime);

-M -A -C perlfunc

perlport



The POSIX::strftime() approach has the benefit of being, in theory, independent of the current locale.
See for details.

You use the utime() function documented in . By way of example, here's a little
program that copies the read and write times from its first argument to all the rest of them.

Error checking is, as usual, left as an exercise for the reader.

Note that utime() currently doesn't work correctly with Win95/NT ports. A bug has been reported.
Check it carefully before using utime() on those platforms.

To connect one filehandle to several output filehandles, you can use the IO::Tee or
Tie::FileHandle::Multiplex modules.

If you only have to do this once, you can print individually to each filehandle.

You can use the File::Slurp module to do it in one step.

The customary Perl approach for processing all the lines in a file is to do so one line at a time:

This is tremendously more efficient than reading the entire file into memory as an array of lines and
then processing it one element at a time, which is often--if not almost always--the wrong approach.
Whenever you see someone do this:

you should think long and hard about why you need everything loaded at once. It's just not a scalable
solution. You might also find it more fun to use the standard Tie::File module, or the DB_File module's
$DB_RECNO bindings, which allow you to tie an array to a file so that accessing an element the array

Perl version 5.8.6 documentation - perlfaq5

Page 11http://perldoc.perl.org

print "file $file updated at $date_string\n";

if (@ARGV < 2) {
die "usage: cptimes timestamp_file other_files ...\n";

}
$timestamp = shift;
($atime, $mtime) = (stat($timestamp))[8,9];
utime $atime, $mtime, @ARGV;

for $fh (FH1, FH2, FH3) { print $fh "whatever\n" }

use File::Slurp;

$all_of_it = read_file($filename); # entire file in scalar
@all_lines = read_file($filename); # one line perl element

open (INPUT, $file) || die "can’t open $file: $!";
while (<INPUT>) {

chomp;
# do something with $_

}
close(INPUT) || die "can’t close $file: $!";

@lines = <INPUT>;

perllocale

"utime" in perlfunc

How do I set a file's timestamp in perl?

How do I print to more than one file at once?

How can I read in an entire file all at once?



actually accesses the corresponding line in the file.

You can read the entire filehandle contents into a scalar.

That temporarily undefs your record separator, and will automatically close the file at block exit. If the
file is already open, just use this:

For ordinary files you can also use the read function.

The third argument tests the byte size of the data on the INPUT filehandle and reads that many bytes
into the buffer $var.

Use the variable (see for details). You can either set it to to eliminate empty paragraphs
( , for instance, gets treated as two paragraphs and not three), or to
accept empty paragraphs.

Note that a blank line must have no blanks in it. Thus is one paragraph,
but is two.

You can use the builtin function for most filehandles, but it won't (easily) work on a terminal
device. For STDIN, either use the Term::ReadKey module from CPAN or use the sample code in

.

If your system supports the portable operating system programming interface (POSIX), you can use
the following code, which you'll note turns off echo processing as well.

Perl version 5.8.6 documentation - perlfaq5

Page 12http://perldoc.perl.org

{
local(*INPUT, $/);
open (INPUT, $file) || die "can’t open $file: $!";
$var = <INPUT>;

}

$var = do { local $/; <INPUT> };

read( INPUT, $var, -s INPUT );

#!/usr/bin/perl -w
use strict;
$| = 1;
for (1..4) {

my $got;
print "gimme: ";
$got = getone();
print "--> $got\n";

}
exit;

BEGIN {
use POSIX qw(:termios_h);

my ($term, $oterm, $echo, $noecho, $fd_stdin);

$fd_stdin = fileno(STDIN);

How can I read in a file by paragraphs?

How can I read a single character from a file? From the keyboard?

$/ ""
"abc\n\n\n\ndef" "\n\n"

"fred\n \nstuff\n\n"
"fred\n\nstuff\n\n"

getc()

perlvar

"getc" in perlfunc



The Term::ReadKey module from CPAN may be easier to use. Recent versions include also support
for non-portable systems as well.

The very first thing you should do is look into getting the Term::ReadKey extension from CPAN. As
we mentioned earlier, it now even has limited support for non-portable (read: not open systems,
closed, proprietary, not POSIX, not Unix, etc) systems.

You should also check out the Frequently Asked Questions list in comp.unix.* for things like this: the
answer is essentially the same. It's very system dependent. Here's one solution that works on BSD
systems:

Perl version 5.8.6 documentation - perlfaq5

Page 13http://perldoc.perl.org

$term = POSIX::Termios->new();
$term->getattr($fd_stdin);
$oterm = $term->getlflag();

$echo = ECHO | ECHOK | ICANON;
$noecho = $oterm & ~$echo;

sub cbreak {
$term->setlflag($noecho);
$term->setcc(VTIME, 1);
$term->setattr($fd_stdin, TCSANOW);

}

sub cooked {
$term->setlflag($oterm);
$term->setcc(VTIME, 0);
$term->setattr($fd_stdin, TCSANOW);

}

sub getone {
my $key = ’’;
cbreak();
sysread(STDIN, $key, 1);
cooked();
return $key;

}

}

END { cooked() }

use Term::ReadKey;
open(TTY, "</dev/tty");
print "Gimme a char: ";
ReadMode "raw";
$key = ReadKey 0, *TTY;
ReadMode "normal";
printf "\nYou said %s, char number %03d\n",

$key, ord $key;

sub key_ready {
my($rin, $nfd);

How can I tell whether there's a character waiting on a filehandle?



If you want to find out how many characters are waiting, there's also the FIONREAD ioctl call to be
looked at. The tool that comes with Perl tries to convert C include files to Perl code, which can
be d. FIONREAD ends up defined as a function in the file:

If wasn't installed or doesn't work for you, you can the include files by hand:

Or write a small C program using the editor of champions:

And then hard code it, leaving porting as an exercise to your successor.

FIONREAD requires a filehandle connected to a stream, meaning that sockets, pipes, and tty devices
work, but files.

First try

The statement doesn't change the current position, but it does clear the
end-of-file condition on the handle, so that the next <GWFILE> makes Perl try again to read
something.

If that doesn't work (it relies on features of your stdio implementation), then you need something more
like this:

Perl version 5.8.6 documentation - perlfaq5

Page 14http://perldoc.perl.org

vec($rin, fileno(STDIN), 1) = 1;
return $nfd = select($rin,undef,undef,0);

}

require ’sys/ioctl.ph’;

$size = pack("L", 0);
ioctl(FH, FIONREAD(), $size) or die "Couldn’t call ioctl: $!\n";
$size = unpack("L", $size);

% grep FIONREAD /usr/include/*/*
/usr/include/asm/ioctls.h:#define FIONREAD 0x541B

% cat > fionread.c
#include <sys/ioctl.h>
main() {

printf("%#08x\n", FIONREAD);
}
^D
% cc -o fionread fionread.c
% ./fionread
0x4004667f

$FIONREAD = 0x4004667f; # XXX: opsys dependent

$size = pack("L", 0);
ioctl(FH, $FIONREAD, $size) or die "Couldn’t call ioctl: $!\n";
$size = unpack("L", $size);

seek(GWFILE, 0, 1);

for (;;) {
for ($curpos = tell(GWFILE); <GWFILE>; $curpos = tell(GWFILE)) {

h2ph
sys/ioctl.ph

h2ph grep

not

require

seek(GWFILE, 0, 1)

How do I do a tail -f in perl?



If this still doesn't work, look into the POSIX module. POSIX defines the clearerr() method, which can
remove the end of file condition on a filehandle. The method: read until end of file, clearerr(), read
some more. Lather, rinse, repeat.

There's also a File::Tail module from CPAN.

If you check , you'll see that several of the ways to call open() should do the trick.
For example:

Or even with a literal numeric descriptor:

Note that "<&STDIN" makes a copy, but "<&=STDIN" make an alias. That means if you close an
aliased handle, all aliases become inaccessible. This is not true with a copied one.

Error checking, as always, has been left as an exercise for the reader.

This should rarely be necessary, as the Perl close() function is to be used for things that Perl opened
itself, even if it was a dup of a numeric descriptor as with MHCONTEXT above. But if you really have
to, you may be able to do this:

Or, just use the fdopen(3S) feature of open():

Whoops! You just put a tab and a formfeed into that filename! Remember that within double quoted
strings ("like\this"), the backslash is an escape character. The full list of these is in

. Unsurprisingly, you don't have a file called "c:(tab)emp(formfeed)oo"
or "c:(tab)emp(formfeed)oo.exe" on your legacy DOS filesystem.

Either single-quote your strings, or (preferably) use forward slashes. Since all DOS and Windows
versions since something like MS-DOS 2.0 or so have treated and the same in a path, you might
as well use the one that doesn't clash with Perl--or the POSIX shell, ANSI C and C++, awk, Tcl, Java,
or Python, just to mention a few. POSIX paths are more portable, too.

Perl version 5.8.6 documentation - perlfaq5

Page 15http://perldoc.perl.org

# search for some stuff and put it into files
}
# sleep for a while
seek(GWFILE, $curpos, 0); # seek to where we had been

}

open(LOG, ">>/foo/logfile");
open(STDERR, ">&LOG");

$fd = $ENV{MHCONTEXTFD};
open(MHCONTEXT, "<&=$fd"); # like fdopen(3S)

require ’sys/syscall.ph’;
$rc = syscall(&SYS_close, $fd + 0); # must force numeric
die "can’t sysclose $fd: $!" unless $rc == -1;

{
local *F;
open F, "<&=$fd" or die "Cannot reopen fd=$fd: $!";
close F;

}

How do I dup() a filehandle in Perl?

How do I close a file descriptor by number?

Why can't I use "C:\temp\foo" in DOS paths? Why doesn't `C:\temp\foo.exe` work?

"open" in perlfunc

"Quote and
Quote-like Operators" in perlop

/ \



Because even on non-Unix ports, Perl's glob function follows standard Unix globbing semantics. You'll
need to get all (non-hidden) files. This makes glob() portable even to legacy systems.
Your port may include proprietary globbing functions as well. Check its documentation for details.

This is elaborately and painstakingly described in the article in the "Far More Than You
Ever Wanted To Know" collection in http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz .

The executive summary: learn how your filesystem works. The permissions on a file say what can
happen to the data in that file. The permissions on a directory say what can happen to the list of files
in that directory. If you delete a file, you're removing its name from the directory (so the operation
depends on the permissions of the directory, not of the file). If you try to write to the file, the
permissions of the file govern whether you're allowed to.

Here's an algorithm from the Camel Book:

This has a significant advantage in space over reading the whole file in. You can find a proof of this
method in , Volume 2, Section 3.4.2, by Donald E. Knuth.

You can use the File::Random module which provides a function for that algorithm:

Another way is to use the Tie::File module, which treats the entire file as an array. Simply access a
random array element.

Saying

joins together the elements of with a space between them. If were
then the above statement would print

but if each element of was a line of text, ending a newline character
then it would print:

If your array contains lines, just print them:

Perl version 5.8.6 documentation - perlfaq5

Page 16http://perldoc.perl.org

Why doesn't glob("*.*") get all the files?

Why does Perl let me delete read-only files? Why does -i clobber protected files? Isn't this a
bug in Perl?

How do I select a random line from a file?

Why do I get weird spaces when I print an array of lines?

glob("*")

@lines @lines ("little",
"fluffy", "clouds")

@lines ("little\n",
"fluffy\n", "clouds\n")

file-dir-perms

The Art of Computer Programming

srand;
rand($.) < 1 && ($line = $_) while <>;

use File::Random qw/random_line/;
my $line = random_line($filename);

print "@lines\n";

little fluffy clouds

little
fluffy
clouds

print @lines;



Copyright (c) 1997-2002 Tom Christiansen and Nathan Torkington. All rights reserved.

This documentation is free; you can redistribute it and/or modify it under the same terms as Perl itself.

Irrespective of its distribution, all code examples here are in the public domain. You are permitted and
encouraged to use this code and any derivatives thereof in your own programs for fun or for profit as
you see fit. A simple comment in the code giving credit to the FAQ would be courteous but is not
required.

Perl version 5.8.6 documentation - perlfaq5

Page 17http://perldoc.perl.org

AUTHOR AND COPYRIGHT


