
perlembed - how to embed perl in your C program

Do you want to:

Read , , , , and .

Read about back-quotes and about and in .

Read about and and and
.

Rethink your design.

Read on...

Compiling your C program

Adding a Perl interpreter to your C program

Calling a Perl subroutine from your C program

Evaluating a Perl statement from your C program

Performing Perl pattern matches and substitutions from your C program

Fiddling with the Perl stack from your C program

Maintaining a persistent interpreter

Maintaining multiple interpreter instances

Using Perl modules, which themselves use C libraries, from your C program

Embedding Perl under Win32

If you have trouble compiling the scripts in this documentation, you're not alone. The cardinal rule:
COMPILE THE PROGRAMS IN EXACTLY THE SAME WAY THAT YOUR PERL WAS COMPILED.
(Sorry for yelling.)

Also, every C program that uses Perl must link in the . What's that, you ask? Perl is itself
written in C; the perl library is the collection of compiled C programs that were used to create your perl
executable (or equivalent). (Corollary: you can't use Perl from your C program unless Perl
has been compiled on your machine, or installed properly--that's why you shouldn't blithely copy Perl
executables from machine to machine without also copying the directory.)

When you use Perl from C, your C program will--usually--allocate, "run", and deallocate a
object, which is defined by the perl library.

If your copy of Perl is recent enough to contain this documentation (version 5.002 or later), then the

Perl version 5.8.6 documentation - perlembed

Page 1http://perldoc.perl.org

NAME

DESCRIPTION
PREAMBLE

ROADMAP

Compiling your C program

Use C from Perl?

Use a Unix program from Perl?

Use Perl from Perl?

Use C from C?

Use Perl from C?

perlxstut perlxs h2xs perlguts perlapi

perlfunc

"do" in perlfunc "eval" in perlfunc "require" in perlfunc "use" in
perlfunc

perl library

/usr/bin/perl

lib

PerlInterpreter

system exec

perl library (and and , which you'll also need) will reside in a directory that looks like
this:

or perhaps just

or maybe something like

Execute this statement for a hint about where to find CORE:

Here's how you'd compile the example in the next section,
, on my Linux box:

(That's all one line.) On my DEC Alpha running old 5.003_05, the incantation is a bit different:

How can you figure out what to add? Assuming your Perl is post-5.001, execute a
command and pay special attention to the "cc" and "ccflags" information.

You'll have to choose the appropriate compiler (, , et al.) for your machine:
will tell you what to use.

You'll also have to choose the appropriate library directory () for your machine. If your
compiler complains that certain functions are undefined, or that it can't locate , then you need to
change the path following the . If it complains that it can't find and , you need to
change the path following the .

You may have to add extra libraries as well. Which ones? Perhaps those printed by

Provided your perl binary was properly configured and installed the module will
determine all of this information for you:

If the module isn't part of your Perl distribution, you can retrieve it from
http://www.perl.com/perl/CPAN/modules/by-module/ExtUtils/ (If this documentation came from your
Perl distribution, then you're running 5.004 or better and you already have it.)

The kit on CPAN also contains all source code for the examples in this document,

Perl version 5.8.6 documentation - perlembed

Page 2http://perldoc.perl.org

EXTERN.h perl.h

Adding a Perl interpreter to your C
program

cc gcc

/usr/local/lib/...
-lperl

EXTERN.h perl.h

/usr/local/lib/perl5/your_architecture_here/CORE

/usr/local/lib/perl5/CORE

/usr/opt/perl5/CORE

perl -MConfig -e ’print $Config{archlib}’

% gcc -O2 -Dbool=char -DHAS_BOOL -I/usr/local/include
-I/usr/local/lib/perl5/i586-linux/5.003/CORE
-L/usr/local/lib/perl5/i586-linux/5.003/CORE
-o interp interp.c -lperl -lm

% cc -O2 -Olimit 2900 -DSTANDARD_C -I/usr/local/include
-I/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE
-L/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE -L/usr/local/lib
-D__LANGUAGE_C__ -D_NO_PROTO -o interp interp.c -lperl -lm

perl -MConfig -e ’print $Config{libs}’

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

perl -V

perl -MConfig
-e ’print $Config{cc}’

-L
-I

ExtUtils::Embed

ExtUtils::Embed

ExtUtils::Embed

tests, additional examples and other information you may find useful.

In a sense, perl (the C program) is a good example of embedding Perl (the language), so I'll
demonstrate embedding with , included in the source distribution. Here's a bastardized,
nonportable version of containing the essentials of embedding:

Notice that we don't use the pointer. Normally handed to as its final argument,
here is replaced by , which means that the current environment will be used. The macros
PERL_SYS_INIT3() and PERL_SYS_TERM() provide system-specific tune up of the C runtime
environment necessary to run Perl interpreters; since PERL_SYS_INIT3() may change , it may be
more appropriate to provide as an argument to perl_parse().

Now compile this program (I'll call it) into an executable:

After a successful compilation, you'll be able to use just like perl itself:

or

You can also read and execute Perl statements from a file while in the midst of your C program, by
placing the filename in before calling .

To call individual Perl subroutines, you can use any of the functions documented in . In
this example we'll use .

Perl version 5.8.6 documentation - perlembed

Page 3http://perldoc.perl.org

Adding a Perl interpreter to your C program

Calling a Perl subroutine from your C program

miniperlmain.c
miniperlmain.c

interp.c

interp

argv[1] perl_run

perlcall

#include <EXTERN.h> /* from the Perl distribution */
#include <perl.h> /* from the Perl distribution */

static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

int main(int argc, char **argv, char **env)
{

PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);

PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_parse(my_perl, NULL, argc, argv, (char **)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);

PERL_SYS_TERM();
}

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% interp
print "Pretty Good Perl \n";
print "10890 - 9801 is ", 10890 - 9801;
<CTRL-D>
Pretty Good Perl
10890 - 9801 is 1089

% interp -e ’printf("%x", 3735928559)’
deadbeef

env perl_parse env
NULL

env
env

call_argv
call_*

That's shown below, in a program I'll call .

where is a Perl subroutine that takes no arguments (that's the) and for which
I'll ignore the return value (that's the). Those flags, and others, are discussed in .

I'll define the subroutine in a file called :

Simple enough. Now compile and run:

yielding the number of seconds that elapsed between January 1, 1970 (the beginning of the Unix
epoch), and the moment I began writing this sentence.

In this particular case we don't have to call , as we set the PL_exit_flag
PERL_EXIT_DESTRUCT_END which executes END blocks in perl_destruct.

If you want to pass arguments to the Perl subroutine, you can add strings to the -terminated
list passed to . For other data types, or to examine return values, you'll need to

manipulate the Perl stack. That's demonstrated in .

Perl version 5.8.6 documentation - perlembed

Page 4http://perldoc.perl.org

showtime.c

showtime G_NOARGS
G_DISCARD perlcall

showtime showtime.pl

perl_run

call_argv
Fiddling with the Perl stack from your C program

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

int main(int argc, char **argv, char **env)
{

char *args[] = { NULL };
PERL_SYS_INIT3(&argc,&argv,&env);

my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, argc, argv, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

/*** skipping perl_run() ***/

call_argv("showtime", G_DISCARD | G_NOARGS, args);

perl_destruct(my_perl);
perl_free(my_perl);

PERL_SYS_TERM();
}

print "I shan’t be printed.";

sub showtime {
print time;

}

% cc -o showtime showtime.c ‘perl -MExtUtils::Embed -e ccopts -e
ldopts‘

% showtime showtime.pl
818284590

NULL
args

Perl provides two API functions to evaluate pieces of Perl code. These are and
.

Arguably, these are the only routines you'll ever need to execute snippets of Perl code from within
your C program. Your code can be as long as you wish; it can contain multiple statements; it can
employ , , and to include external Perl files.

lets us evaluate individual Perl strings, and then extract variables for coercion into C types.
The following program, , executes three Perl strings, extracting an from the first, a
from the second, and a from the third.

All of those strange functions with in their names help convert Perl scalars to C types. They're
described in and .

If you compile and run , you'll see the results of using to create an , to
create a , and to create a string:

Perl version 5.8.6 documentation - perlembed

Page 5http://perldoc.perl.org

Evaluating a Perl statement from your C program
"eval_sv" in perlapi

"eval_pv" in perlapi

"use" in perlfunc "require" in perlfunc "do" in perlfunc

eval_pv
string.c

sv
perlguts perlapi

string.c SvIV() SvNV()
SvPV()

int float
char *

int
float

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

main (int argc, char **argv, char **env)
{

STRLEN n_a;
char *embedding[] = { "", "-e", "0" };

PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, 3, embedding, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_run(my_perl);

/** Treat $a as an integer **/
eval_pv("$a = 3; $a **= 2", TRUE);
printf("a = %d\n", SvIV(get_sv("a", FALSE)));

/** Treat $a as a float **/
eval_pv("$a = 3.14; $a **= 2", TRUE);
printf("a = %f\n", SvNV(get_sv("a", FALSE)));

/** Treat $a as a string **/
eval_pv("$a = ’rekcaH lreP rehtonA tsuJ’; $a = reverse($a);", TRUE);
printf("a = %s\n", SvPV(get_sv("a", FALSE), n_a));

perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();

}

a = 9

In the example above, we've created a global variable to temporarily store the computed value of our
eval'd expression. It is also possible and in most cases a better strategy to fetch the return value from

instead. Example:

This way, we avoid namespace pollution by not creating global variables and we've simplified our
code as well.

The function lets us evaluate strings of Perl code, so we can define some functions that use
it to "specialize" in matches and substitutions: , , and .

Given a string and a pattern (e.g., or , which in your C program might appear
as "/\\b\\w*\\b/"), match() returns 1 if the string matches the pattern and 0 otherwise.

Given a pointer to an and an operation (e.g., or),
substitute() modifies the string within the as according to the operation, returning the number of
substitutions made.

Given an , a pattern, and a pointer to an empty , matches() evaluates
in a list context, and fills in with the array elements, returning the number of matches found.

Here's a sample program, , that uses all three (long lines have been wrapped here):

Perl version 5.8.6 documentation - perlembed

Page 6http://perldoc.perl.org

a = 9.859600
a = Just Another Perl Hacker

...
STRLEN n_a;
SV *val = eval_pv("reverse ’rekcaH lreP rehtonA tsuJ’", TRUE);
printf("%s\n", SvPV(val,n_a));
...

I32 match(SV *string, char *pattern);

int substitute(SV **string, char *pattern);

int matches(SV *string, char *pattern, AV **matches);

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

/** my_eval_sv(code, error_check)
** kinda like eval_sv(),
** but we pop the return value off the stack
**/
SV* my_eval_sv(SV *sv, I32 croak_on_error)
{

dSP;
SV* retval;
STRLEN n_a;

PUSHMARK(SP);
eval_sv(sv, G_SCALAR);

eval_pv()

eval_sv()
match() substitute() matches()

matches

match.c

Performing Perl pattern matches and substitutions from your C program

m/clasp/ /\b\w*\b/

SV =~ s/bob/robert/g tr[A-Z][a-z]
SV

SV AV $string =~ $pattern

Perl version 5.8.6 documentation - perlembed

Page 7http://perldoc.perl.org

SPAGAIN;
retval = POPs;
PUTBACK;

if (croak_on_error && SvTRUE(ERRSV))
croak(SvPVx(ERRSV, n_a));

return retval;
}

/** match(string, pattern)
**
** Used for matches in a scalar context.
**
** Returns 1 if the match was successful; 0 otherwise.
**/

I32 match(SV *string, char *pattern)
{

SV *command = NEWSV(1099, 0), *retval;
STRLEN n_a;

sv_setpvf(command, "my $string = ’%s’; $string =~ %s",
SvPV(string,n_a), pattern);

retval = my_eval_sv(command, TRUE);
SvREFCNT_dec(command);

return SvIV(retval);
}

/** substitute(string, pattern)
**
** Used for =~ operations that modify their left-hand side (s/// and
tr///)
**
** Returns the number of successful matches, and
** modifies the input string if there were any.
**/

I32 substitute(SV **string, char *pattern)
{

SV *command = NEWSV(1099, 0), *retval;
STRLEN n_a;

sv_setpvf(command, "$string = ’%s’; ($string =~ %s)",
SvPV(*string,n_a), pattern);

retval = my_eval_sv(command, TRUE);
SvREFCNT_dec(command);

*string = get_sv("string", FALSE);

Perl version 5.8.6 documentation - perlembed

Page 8http://perldoc.perl.org

return SvIV(retval);
}

/** matches(string, pattern, matches)
**
** Used for matches in a list context.
**
** Returns the number of matches,
** and fills in **matches with the matching substrings
**/

I32 matches(SV *string, char *pattern, AV **match_list)
{

SV *command = NEWSV(1099, 0);
I32 num_matches;
STRLEN n_a;

sv_setpvf(command, "my $string = ’%s’; @array = ($string =~ %s)",
SvPV(string,n_a), pattern);

my_eval_sv(command, TRUE);
SvREFCNT_dec(command);

*match_list = get_av("array", FALSE);
num_matches = av_len(*match_list) + 1; /** assume $[is 0 **/

return num_matches;
}

main (int argc, char **argv, char **env)
{

char *embedding[] = { "", "-e", "0" };
AV *match_list;
I32 num_matches, i;
SV *text;
STRLEN n_a;

PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, embedding, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

text = NEWSV(1099,0);
sv_setpv(text, "When he is at a convenience store and the "

"bill comes to some amount like 76 cents, Maynard is "
"aware that there is something he *should* do, something "
"that will enable him to get back a quarter, but he has "
"no idea *what*. He fumbles through his red squeezey "
"changepurse and gives the boy three extra pennies with "
"his dollar, hoping that he might luck into the correct "
"amount. The boy gives him back two of his own pennies "
"and then the big shiny quarter that is his prize. "

which produces the output (again, long lines have been wrapped here)

Perl version 5.8.6 documentation - perlembed

Page 9http://perldoc.perl.org

"-RICHH");

if (match(text, "m/quarter/")) /** Does text contain ’quarter’? **/
printf("match: Text contains the word ’quarter’.\n\n");

else
printf("match: Text doesn’t contain the word ’quarter’.\n\n");

if (match(text, "m/eighth/")) /** Does text contain ’eighth’? **/
printf("match: Text contains the word ’eighth’.\n\n");

else
printf("match: Text doesn’t contain the word ’eighth’.\n\n");

/** Match all occurrences of /wi../ **/
num_matches = matches(text, "m/(wi..)/g", &match_list);
printf("matches: m/(wi..)/g found %d matches...\n", num_matches);

for (i = 0; i < num_matches; i++)
printf("match: %s\n", SvPV(*av_fetch(match_list, i, FALSE),n_a));

printf("\n");

/** Remove all vowels from text **/
num_matches = substitute(&text, "s/[aeiou]//gi");
if (num_matches) {

printf("substitute: s/[aeiou]//gi...%d substitutions made.\n",
num_matches);

printf("Now text is: %s\n\n", SvPV(text,n_a));
}

/** Attempt a substitution **/
if (!substitute(&text, "s/Perl/C/")) {

printf("substitute: s/Perl/C...No substitution made.\n\n");
}

SvREFCNT_dec(text);
PL_perl_destruct_level = 1;
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();

}

match: Text contains the word ’quarter’.

match: Text doesn’t contain the word ’eighth’.

matches: m/(wi..)/g found 2 matches...
match: will
match: with

substitute: s/[aeiou]//gi...139 substitutions made.
Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,
Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt bck

When trying to explain stacks, most computer science textbooks mumble something about
spring-loaded columns of cafeteria plates: the last thing you pushed on the stack is the first thing you
pop off. That'll do for our purposes: your C program will push some arguments onto "the Perl stack",
shut its eyes while some magic happens, and then pop the results--the return value of your Perl
subroutine--off the stack.

First you'll need to know how to convert between C types and Perl types, with newSViv() and
sv_setnv() and newAV() and all their friends. They're described in and .

Then you'll need to know how to manipulate the Perl stack. That's described in .

Once you've understood those, embedding Perl in C is easy.

Because C has no builtin function for integer exponentiation, let's make Perl's ** operator available to
it (this is less useful than it sounds, because Perl implements ** with C's function). First I'll
create a stub exponentiation function in :

Now I'll create a C program, , with a function that contains all the perlguts
necessary to push the two arguments into and to pop the return value out. Take a deep
breath...

Perl version 5.8.6 documentation - perlembed

Page 10http://perldoc.perl.org

qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd gvs th by
thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct mnt. Th by

gvs
hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s hs prz. -RCHH

substitute: s/Perl/C...No substitution made.

sub expo {
my ($a, $b) = @_;
return $a ** $b;

}

#include <EXTERN.h>
#include <perl.h>

static PerlInterpreter *my_perl;

static void
PerlPower(int a, int b)
{
dSP; /* initialize stack pointer */
ENTER; /* everything created after here */
SAVETMPS; /* ...is a temporary variable. */
PUSHMARK(SP); /* remember the stack pointer */
XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */
XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */
PUTBACK; /* make local stack pointer global */
call_pv("expo", G_SCALAR); /* call the function */
SPAGAIN; /* refresh stack pointer */

/* pop the return value from stack */
printf ("%d to the %dth power is %d.\n", a, b, POPi);
PUTBACK;
FREETMPS; /* free that return value */
LEAVE; /* ...and the XPUSHed "mortal" args.*/

Fiddling with the Perl stack from your C program

perlguts perlapi

perlcall

pow()
power.pl

power.c PerlPower()
expo()

Compile and run:

When developing interactive and/or potentially long-running applications, it's a good idea to maintain
a persistent interpreter rather than allocating and constructing a new interpreter multiple times. The
major reason is speed: since Perl will only be loaded into memory once.

However, you have to be more cautious with namespace and variable scoping when using a
persistent interpreter. In previous examples we've been using global variables in the default package

. We knew exactly what code would be run, and assumed we could avoid variable collisions and
outrageous symbol table growth.

Let's say your application is a server that will occasionally run Perl code from some arbitrary file. Your
server has no way of knowing what code it's going to run. Very dangerous.

If the file is pulled in by , compiled into a newly constructed interpreter, and
subsequently cleaned out with afterwards, you're shielded from most namespace
troubles.

One way to avoid namespace collisions in this scenario is to translate the filename into a
guaranteed-unique package name, and then compile the code into that package using

. In the example below, each file will only be compiled once. Or, the application might choose
to clean out the symbol table associated with the file after it's no longer needed. Using

, We'll call the subroutine which lives in the file
and pass the filename and boolean cleanup/cache flag as arguments.

Note that the process will continue to grow for each file that it uses. In addition, there might be
ed subroutines and other conditions that cause Perl's symbol table to grow. You might

want to add some logic that keeps track of the process size, or restarts itself after a certain number of

Perl version 5.8.6 documentation - perlembed

Page 11http://perldoc.perl.org

}

int main (int argc, char **argv, char **env)
{
char *my_argv[] = { "", "power.pl" };

PERL_SYS_INIT3(&argc,&argv,&env);
my_perl = perl_alloc();
perl_construct(my_perl);

perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
perl_run(my_perl);

PerlPower(3, 4); /*** Compute 3 ** 4 ***/

perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();

}

% cc -o power power.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% power
3 to the 4th power is 81.

Maintaining a persistent interpreter

main

perl_parse()
perl_destruct()

Embed::Persistent::eval_file
persistent.pl

AUTOLOAD

"eval" in
perlfunc

"call_argv" in
perlapi

requests, to ensure that memory consumption is minimized. You'll also want to scope your variables
with whenever possible.

Perl version 5.8.6 documentation - perlembed

Page 12http://perldoc.perl.org

"my" in perlfunc

package Embed::Persistent;
#persistent.pl

use strict;
our %Cache;
use Symbol qw(delete_package);

sub valid_package_name {
my($string) = @_;
$string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;
second pass only for words starting with a digit
$string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;

Dress it up as a real package name
$string =~ s|/|::|g;
return "Embed" . $string;

}

sub eval_file {
my($filename, $delete) = @_;
my $package = valid_package_name($filename);
my $mtime = -M $filename;
if(defined $Cache{$package}{mtime}

&&
$Cache{$package}{mtime} <= $mtime)

{
we have compiled this subroutine already,
it has not been updated on disk, nothing left to do
print STDERR "already compiled $package->handler\n";

}
else {

local *FH;
open FH, $filename or die "open ’$filename’ $!";
local($/) = undef;
my $sub = <FH>;
close FH;

#wrap the code into a subroutine inside our unique package
my $eval = qq{package $package; sub handler { $sub; }};
{

hide our variables within this block
my($filename,$mtime,$package,$sub);
eval $eval;

}
die $@ if $@;

#cache it unless we’re cleaning out each time
$Cache{$package}{mtime} = $mtime unless $delete;

}

eval {$package->handler;};

Perl version 5.8.6 documentation - perlembed

Page 13http://perldoc.perl.org

die $@ if $@;

delete_package($package) if $delete;

#take a look if you want
#print Devel::Symdump->rnew($package)->as_string, $/;

}

1;

__END__

/* persistent.c */
#include <EXTERN.h>
#include <perl.h>

/* 1 = clean out filename’s symbol table after each request, 0 = don’t */
#ifndef DO_CLEAN
#define DO_CLEAN 0
#endif

#define BUFFER_SIZE 1024

static PerlInterpreter *my_perl = NULL;

int
main(int argc, char **argv, char **env)
{

char *embedding[] = { "", "persistent.pl" };
char *args[] = { "", DO_CLEAN, NULL };
char filename[BUFFER_SIZE];
int exitstatus = 0;
STRLEN n_a;

PERL_SYS_INIT3(&argc,&argv,&env);
if((my_perl = perl_alloc()) == NULL) {

fprintf(stderr, "no memory!");
exit(1);

}
perl_construct(my_perl);

exitstatus = perl_parse(my_perl, NULL, 2, embedding, NULL);
PL_exit_flags |= PERL_EXIT_DESTRUCT_END;
if(!exitstatus) {

exitstatus = perl_run(my_perl);

while(printf("Enter file name: ") &&
fgets(filename, BUFFER_SIZE, stdin)) {

filename[strlen(filename)-1] = ’\0’; /* strip \n */
/* call the subroutine, passing it the filename as an argument

*/

Now compile:

Here's an example script file:

Now run:

Traditionally END blocks have been executed at the end of the perl_run. This causes problems for
applications that never call perl_run. Since perl 5.7.2 you can specify

to get the new behaviour. This also enables the running of END blocks
if the perl_parse fails and will return the exit value.

Some rare applications will need to create more than one interpreter during a session. Such an
application might sporadically decide to release any resources associated with the interpreter.

The program must take care to ensure that this takes place the next interpreter is constructed.
By default, when perl is not built with any special options, the global variable

is set to , since extra cleaning isn't usually needed when a program

Perl version 5.8.6 documentation - perlembed

Page 14http://perldoc.perl.org

args[0] = filename;
call_argv("Embed::Persistent::eval_file",

G_DISCARD | G_EVAL, args);

/* check $@ */
if(SvTRUE(ERRSV))

fprintf(stderr, "eval error: %s\n", SvPV(ERRSV,n_a));
}

}

PL_perl_destruct_level = 0;
perl_destruct(my_perl);
perl_free(my_perl);
PERL_SYS_TERM();
exit(exitstatus);

}

% cc -o persistent persistent.c ‘perl -MExtUtils::Embed -e ccopts -e
ldopts‘

#test.pl
my $string = "hello";
foo($string);

sub foo {
print "foo says: @_\n";

}

% persistent
Enter file name: test.pl
foo says: hello
Enter file name: test.pl
already compiled Embed::test_2epl->handler
foo says: hello
Enter file name: ^C

Execution of END blocks

Maintaining multiple interpreter instances

PL_exit_flags |=
PERL_EXIT_DESTRUCT_END

perl_destruct

PL_perl_destruct_level 0

before

only ever creates a single interpreter in its entire lifetime.

Setting to makes everything squeaky clean:

When is called, the interpreter's syntax parse tree and symbol tables are cleaned up,
and global variables are reset. The second assignment to is needed
because perl_construct resets it to .

Now suppose we have more than one interpreter instance running at the same time. This is feasible,
but only if you used the Configure option or the options

when building perl. By default, enabling one of these Configure options sets the
per-interpreter global variable to , so that thorough cleaning is
automatic and interpreter variables are initialized correctly. Even if you don't intend to run two or more
interpreters at the same time, but to run them sequentially, like in the above example, it is
recommended to build perl with the option otherwise some interpreter
variables may not be initialized correctly between consecutive runs and your application may crash.

Using rather than is more appropriate if
you intend to run multiple interpreters concurrently in different threads, because it enables support for
linking in the thread libraries of your system with the interpreter.

Let's give it a try:

Perl version 5.8.6 documentation - perlembed

Page 15http://perldoc.perl.org

PL_perl_destruct_level 1

PL_perl_destruct_level
0

-Dusemultiplicity -Dusethreads
-Duseithreads

PL_perl_destruct_level 1

-Dusemultiplicity

-Dusethreads -Duseithreads -Dusemultiplicity

while(1) {
...
/* reset global variables here with PL_perl_destruct_level = 1 */
PL_perl_destruct_level = 1;
perl_construct(my_perl);
...
/* clean and reset _everything_ during perl_destruct */
PL_perl_destruct_level = 1;
perl_destruct(my_perl);
perl_free(my_perl);
...
/* let’s go do it again! */

}

#include <EXTERN.h>
#include <perl.h>

/* we’re going to embed two interpreters */
/* we’re going to embed two interpreters */

#define SAY_HELLO "-e", "print qq(Hi, I’m $^X\n)"

int main(int argc, char **argv, char **env)
{

PerlInterpreter *one_perl, *two_perl;
char *one_args[] = { "one_perl", SAY_HELLO };
char *two_args[] = { "two_perl", SAY_HELLO };

PERL_SYS_INIT3(&argc,&argv,&env);
one_perl = perl_alloc();
two_perl = perl_alloc();

PERL_SET_CONTEXT(one_perl);

perl_destruct()

Note the calls to PERL_SET_CONTEXT(). These are necessary to initialize the global state that
tracks which interpreter is the "current" one on the particular process or thread that may be running it.
It should always be used if you have more than one interpreter and are making perl API calls on both
interpreters in an interleaved fashion.

PERL_SET_CONTEXT(interp) should also be called whenever is used by a thread that did
not create it (using either perl_alloc(), or the more esoteric perl_clone()).

Compile as usual:

Run it, Run it:

If you've played with the examples above and tried to embed a script that s a Perl module (such
as) which itself uses a C or C++ library, this probably happened:

What's wrong?

Perl version 5.8.6 documentation - perlembed

Page 16http://perldoc.perl.org

perl_construct(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_construct(two_perl);

PERL_SET_CONTEXT(one_perl);
perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);
PERL_SET_CONTEXT(two_perl);
perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);

PERL_SET_CONTEXT(one_perl);
perl_run(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_run(two_perl);

PERL_SET_CONTEXT(one_perl);
perl_destruct(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_destruct(two_perl);

PERL_SET_CONTEXT(one_perl);
perl_free(one_perl);
PERL_SET_CONTEXT(two_perl);
perl_free(two_perl);
PERL_SYS_TERM();

}

% cc -o multiplicity multiplicity.c ‘perl -MExtUtils::Embed -e ccopts -e
ldopts‘

% multiplicity
Hi, I’m one_perl
Hi, I’m two_perl

Can’t load module Socket, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports
dynamic loading or has the Socket module statically linked into it.)

interp

Using Perl modules, which themselves use C libraries, from your C program
use()

Socket

Your interpreter doesn't know how to communicate with these extensions on its own. A little glue will
help. Up until now you've been calling , handing it NULL for the second argument:

That's where the glue code can be inserted to create the initial contact between Perl and linked
C/C++ routines. Let's take a look some pieces of to see how Perl does this:

Simply put: for each extension linked with your Perl executable (determined during its initial
configuration on your computer or when adding a new extension), a Perl subroutine is created to
incorporate the extension's routines. Normally, that subroutine is named and is
invoked when you say . In turn, this hooks into an XSUB, , which creates a
Perl counterpart for each of the extension's XSUBs. Don't worry about this part; leave that to the

and extension authors. If your extension is dynamically loaded, DynaLoader creates
for you on the fly. In fact, if you have a working DynaLoader then there is rarely

any need to link in any other extensions statically.

Once you have this code, slap it into the second argument of :

Then compile:

can also automate writing the glue code.

Consult , , and for more details.

Perl version 5.8.6 documentation - perlembed

Page 17http://perldoc.perl.org

perl_parse()

perlmain.c

Module::bootstrap()
use Module boot_Module

xsubpp
Module::bootstrap()

perl_parse()

xs_init

perlxs perlguts perlapi

perl_parse(my_perl, NULL, argc, my_argv, NULL);

static void xs_init (pTHX);

EXTERN_C void boot_DynaLoader (pTHX_ CV* cv);
EXTERN_C void boot_Socket (pTHX_ CV* cv);

EXTERN_C void
xs_init(pTHX)
{

char *file = __FILE__;
/* DynaLoader is a special case */
newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);
newXS("Socket::bootstrap", boot_Socket, file);

}

perl_parse(my_perl, xs_init, argc, my_argv, NULL);

% cc -o interp interp.c ‘perl -MExtUtils::Embed -e ccopts -e ldopts‘

% interp
use Socket;
use SomeDynamicallyLoadedModule;

print "Now I can use extensions!\n"’

% perl -MExtUtils::Embed -e xsinit -- -o perlxsi.c
% cc -c perlxsi.c ‘perl -MExtUtils::Embed -e ccopts‘
% cc -c interp.c ‘perl -MExtUtils::Embed -e ccopts‘
% cc -o interp perlxsi.o interp.o ‘perl -MExtUtils::Embed -e ldopts‘

ExtUtils::Embed

In general, all of the source code shown here should work unmodified under Windows.

However, there are some caveats about the command-line examples shown. For starters, backticks
won't work under the Win32 native command shell. The ExtUtils::Embed kit on CPAN ships with a
script called , which generates a simple makefile to build a program from a single C source
file. It can be used like this:

You may wish to use a more robust environment such as the Microsoft Developer Studio. In this case,
run this to generate perlxsi.c:

Create a new project and Insert -> Files into Project: perlxsi.c, perl.lib, and your own source files, e.g.
interp.c. Typically you'll find perl.lib in , if not, you should see the directory
relative to . The studio will also need this path so it knows where to find Perl
include files. This path can be added via the Tools -> Options -> Directories menu. Finally, select
Build -> Build interp.exe and you're ready to go.

If you completely hide the short forms forms of the Perl public API, add
-DPERL_NO_SHORT_NAMES to the compilation flags. This means that for example instead of
writing

you will have to write the explicit full form

(See)
Hiding the short forms is very useful for avoiding all sorts of nasty (C preprocessor or otherwise)
conflicts with other software packages (Perl defines about 2400 APIs with these short names, take or
leave few hundred, so there certainly is room for conflict.)

You can sometimes in C, but you can always in Perl. Because you
can use each from the other, combine them as you wish.

Jon Orwant < > and Doug MacEachern < >, with small
contributions from Tim Bunce, Tom Christiansen, Guy Decoux, Hallvard Furuseth, Dov Grobgeld, and
Ilya Zakharevich.

Doug MacEachern has an article on embedding in Volume 1, Issue 4 of The Perl Journal (
http://www.tpj.com/). Doug is also the developer of the most widely-used Perl embedding: the
mod_perl system (perl.apache.org), which embeds Perl in the Apache web server. Oracle, Binary
Evolution, ActiveState, and Ben Sugars's nsapi_perl have used this model for Oracle, Netscape and
Internet Information Server Perl plugins.

July 22, 1998

Perl version 5.8.6 documentation - perlembed

Page 18http://perldoc.perl.org

Embedding Perl under Win32

Hiding Perl_

MORAL

AUTHOR

genmake

C:\perl\lib\CORE CORE

C:\ExtUtils-Embed\eg> perl genmake interp.c
C:\ExtUtils-Embed\eg> nmake
C:\ExtUtils-Embed\eg> interp -e "print qq{I’m embedded in Win32!\n}"

perl -MExtUtils::Embed -e xsinit

warn("%d bottles of beer on the wall", bottlecount);

Perl_warn(aTHX_ "%d bottles of beer on the wall", bottlecount);

perl -V:archlib

"Background and PERL_IMPLICIT_CONTEXT for the explanation of the ." in perlguts

write faster code write code faster

orwant@media.mit.edu dougm@covalent.net

aTHX_

Copyright (C) 1995, 1996, 1997, 1998 Doug MacEachern and Jon Orwant. All Rights Reserved.

Permission is granted to make and distribute verbatim copies of this documentation provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation under the
conditions for verbatim copying, provided also that they are marked clearly as modified versions, that
the authors' names and title are unchanged (though subtitles and additional authors' names may be
added), and that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.

Perl version 5.8.6 documentation - perlembed

Page 19http://perldoc.perl.org

COPYRIGHT

