
perlbot - Bag'o Object Tricks (the BOT)

The following collection of tricks and hints is intended to whet curious appetites about such things as
the use of instance variables and the mechanics of object and class relationships. The reader is
encouraged to consult relevant textbooks for discussion of Object Oriented definitions and
methodology. This is not intended as a tutorial for object-oriented programming or as a
comprehensive guide to Perl's object oriented features, nor should it be construed as a style guide. If
you're looking for tutorials, be sure to read , , and .

The Perl motto still holds: There's more than one way to do it.

1 Do not attempt to verify the type of $self. That'll break if the class is inherited, when the type
of $self is valid but its package isn't what you expect. See rule 5.

2 If an object-oriented (OO) or indirect-object (IO) syntax was used, then the object is probably
the correct type and there's no need to become paranoid about it. Perl isn't a paranoid
language anyway. If people subvert the OO or IO syntax then they probably know what
they're doing and you should let them do it. See rule 1.

3 Use the two-argument form of bless(). Let a subclass use your constructor. See
.

4 The subclass is allowed to know things about its immediate superclass, the superclass is
allowed to know nothing about a subclass.

5 Don't be trigger happy with inheritance. A "using", "containing", or "delegation" relationship
(some sort of aggregation, at least) is often more appropriate. See

, , and .

6 The object is the namespace. Make package globals accessible via the object. This will
remove the guess work about the symbol's home package. See

.

7 IO syntax is certainly less noisy, but it is also prone to ambiguities that can cause
difficult-to-find bugs. Allow people to use the sure-thing OO syntax, even if you don't like it.

8 Do not use function-call syntax on a method. You're going to be bitten someday. Someone
might move that method into a superclass and your code will be broken. On top of that
you're feeding the paranoia in rule 2.

9 Don't assume you know the home package of a method. You're making it difficult for
someone to override that method. See .

An anonymous array or anonymous hash can be used to hold instance variables. Named parameters
are also demonstrated.

Perl version 5.8.6 documentation - perlbot

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

OO SCALING TIPS

INSTANCE VARIABLES

perlboot perltoot perltooc

INHERITING A CONSTRUCTOR

OBJECT
RELATIONSHIPS USING RELATIONSHIP WITH SDBM DELEGATION

CLASS CONTEXT AND
THE OBJECT

THINKING OF CODE REUSE

package Foo;

sub new {
my $type = shift;
my %params = @_;
my $self = {};
$self->{’High’} = $params{’High’};
$self->{’Low’} = $params{’Low’};

An anonymous scalar can be used when only one instance variable is needed.

This example demonstrates how one might inherit instance variables from a superclass for inclusion
in the new class. This requires calling the superclass's constructor and adding one's own instance
variables to the new object.

Perl version 5.8.6 documentation - perlbot

Page 2http://perldoc.perl.org

bless $self, $type;
}

package Bar;

sub new {
my $type = shift;
my %params = @_;
my $self = [];
$self->[0] = $params{’Left’};
$self->[1] = $params{’Right’};
bless $self, $type;
}

package main;

$a = Foo->new(’High’ => 42, ’Low’ => 11);
print "High=$a->{’High’}\n";
print "Low=$a->{’Low’}\n";

$b = Bar->new(’Left’ => 78, ’Right’ => 40);
print "Left=$b->[0]\n";
print "Right=$b->[1]\n";

package Foo;

sub new {
my $type = shift;
my $self;
$self = shift;
bless \$self, $type;
}

package main;

$a = Foo->new(42);
print "a=$$a\n";

package Bar;

sub new {
my $type = shift;
my $self = {};
$self->{’buz’} = 42;

SCALAR INSTANCE VARIABLES

INSTANCE VARIABLE INHERITANCE

The following demonstrates how one might implement "containing" and "using" relationships between
objects.

The following example demonstrates how to override a superclass method and then call the
overridden method. The pseudo-class allows the programmer to call an overridden
superclass method without actually knowing where that method is defined.

Perl version 5.8.6 documentation - perlbot

Page 3http://perldoc.perl.org

bless $self, $type;
}

package Foo;
@ISA = qw(Bar);

sub new {
my $type = shift;
my $self = Bar->new;
$self->{’biz’} = 11;
bless $self, $type;
}

package main;

$a = Foo->new;
print "buz = ", $a->{’buz’}, "\n";
print "biz = ", $a->{’biz’}, "\n";

package Bar;

sub new {
my $type = shift;
my $self = {};
$self->{’buz’} = 42;
bless $self, $type;
}

package Foo;

sub new {
my $type = shift;
my $self = {};
$self->{’Bar’} = Bar->new;
$self->{’biz’} = 11;
bless $self, $type;
}

package main;

$a = Foo->new;
print "buz = ", $a->{’Bar’}->{’buz’}, "\n";
print "biz = ", $a->{’biz’}, "\n";

OBJECT RELATIONSHIPS

OVERRIDING SUPERCLASS METHODS

SUPER

Note that refers to the superclasses of the current package (), not to the superclasses of
.

This example demonstrates an interface for the SDBM class. This creates a "using" relationship
between the SDBM class and the new class Mydbm.

Perl version 5.8.6 documentation - perlbot

Page 4http://perldoc.perl.org

package Buz;
sub goo { print "here’s the goo\n" }

package Bar; @ISA = qw(Buz);
sub google { print "google here\n" }

package Baz;
sub mumble { print "mumbling\n" }

package Foo;
@ISA = qw(Bar Baz);

sub new {
my $type = shift;
bless [], $type;
}
sub grr { print "grumble\n" }
sub goo {
my $self = shift;
$self->SUPER::goo();
}
sub mumble {
my $self = shift;
$self->SUPER::mumble();
}
sub google {
my $self = shift;
$self->SUPER::google();
}

package main;

$foo = Foo->new;
$foo->mumble;
$foo->grr;
$foo->goo;
$foo->google;

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = qw(Tie::Hash);

sub TIEHASH {
my $type = shift;

SUPER Foo
$self

USING RELATIONSHIP WITH SDBM

One strength of Object-Oriented languages is the ease with which old code can use new code. The
following examples will demonstrate first how one can hinder code reuse and then how one can
promote code reuse.

This first example illustrates a class which uses a fully-qualified method call to access the "private"
method BAZ(). The second example will show that it is impossible to override the BAZ() method.

Perl version 5.8.6 documentation - perlbot

Page 5http://perldoc.perl.org

my $ref = SDBM_File->new(@_);
bless {’dbm’ => $ref}, $type;

}
sub FETCH {

my $self = shift;
my $ref = $self->{’dbm’};
$ref->FETCH(@_);

}
sub STORE {

my $self = shift;
if (defined $_[0]){

my $ref = $self->{’dbm’};
$ref->STORE(@_);

} else {
die "Cannot STORE an undefined key in Mydbm\n";

}
}

package main;
use Fcntl qw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "Sdbm", O_RDWR|O_CREAT, 0640;
$foo{’bar’} = 123;
print "foo-bar = $foo{’bar’}\n";

tie %bar, "Mydbm", "Sdbm2", O_RDWR|O_CREAT, 0640;
$bar{’Cathy’} = 456;
print "bar-Cathy = $bar{’Cathy’}\n";

package FOO;

sub new {
my $type = shift;
bless {}, $type;
}
sub bar {
my $self = shift;
$self->FOO::private::BAZ;
}

package FOO::private;

sub BAZ {
print "in BAZ\n";
}

THINKING OF CODE REUSE

Now we try to override the BAZ() method. We would like FOO::bar() to call GOOP::BAZ(), but this
cannot happen because FOO::bar() explicitly calls FOO::private::BAZ().

To create reusable code we must modify class FOO, flattening class FOO::private. The next example
shows a reusable class FOO which allows the method GOOP::BAZ() to be used in place of
FOO::BAZ().

Perl version 5.8.6 documentation - perlbot

Page 6http://perldoc.perl.org

package main;

$a = FOO->new;
$a->bar;

package FOO;

sub new {
my $type = shift;
bless {}, $type;
}
sub bar {
my $self = shift;
$self->FOO::private::BAZ;
}

package FOO::private;

sub BAZ {
print "in BAZ\n";
}

package GOOP;
@ISA = qw(FOO);
sub new {
my $type = shift;
bless {}, $type;
}

sub BAZ {
print "in GOOP::BAZ\n";
}

package main;

$a = GOOP->new;
$a->bar;

package FOO;

sub new {
my $type = shift;
bless {}, $type;
}
sub bar {
my $self = shift;

Use the object to solve package and class context problems. Everything a method needs should be
available via the object or should be passed as a parameter to the method.

A class will sometimes have static or global data to be used by the methods. A subclass may want to
override that data and replace it with new data. When this happens the superclass may not know how
to find the new copy of the data.

This problem can be solved by using the object to define the context of the method. Let the method
look in the object for a reference to the data. The alternative is to force the method to go hunting for
the data ("Is it in my class, or in a subclass? Which subclass?"), and this can be inconvenient and will
lead to hackery. It is better just to let the object tell the method where that data is located.

Perl version 5.8.6 documentation - perlbot

Page 7http://perldoc.perl.org

$self->BAZ;
}

sub BAZ {
print "in BAZ\n";
}

package GOOP;
@ISA = qw(FOO);

sub new {
my $type = shift;
bless {}, $type;
}
sub BAZ {
print "in GOOP::BAZ\n";
}

package main;

$a = GOOP->new;
$a->bar;

package Bar;

%fizzle = (’Password’ => ’XYZZY’);

sub new {
my $type = shift;
my $self = {};
$self->{’fizzle’} = \%fizzle;
bless $self, $type;
}

sub enter {
my $self = shift;

Don’t try to guess if we should use %Bar::fizzle
or %Foo::fizzle. The object already knows which
we should use, so just ask it.

CLASS CONTEXT AND THE OBJECT

An inheritable constructor should use the second form of bless() which allows blessing directly into a
specified class. Notice in this example that the object will be a BAR not a FOO, even though the
constructor is in class FOO.

Perl version 5.8.6 documentation - perlbot

Page 8http://perldoc.perl.org

#
my $fizzle = $self->{’fizzle’};

print "The word is ", $fizzle->{’Password’}, "\n";
}

package Foo;
@ISA = qw(Bar);

%fizzle = (’Password’ => ’Rumple’);

sub new {
my $type = shift;
my $self = Bar->new;
$self->{’fizzle’} = \%fizzle;
bless $self, $type;
}

package main;

$a = Bar->new;
$b = Foo->new;
$a->enter;
$b->enter;

package FOO;

sub new {
my $type = shift;
my $self = {};
bless $self, $type;
}

sub baz {
print "in FOO::baz()\n";
}

package BAR;
@ISA = qw(FOO);

sub baz {
print "in BAR::baz()\n";
}

package main;

$a = BAR->new;

INHERITING A CONSTRUCTOR

Some classes, such as SDBM_File, cannot be effectively subclassed because they create foreign
objects. Such a class can be extended with some sort of aggregation technique such as the "using"
relationship mentioned earlier or by delegation.

The following example demonstrates delegation using an AUTOLOAD() function to perform
message-forwarding. This will allow the Mydbm object to behave exactly like an SDBM_File object.
The Mydbm class could now extend the behavior by adding custom FETCH() and STORE() methods,
if this is desired.

, , .

Perl version 5.8.6 documentation - perlbot

Page 9http://perldoc.perl.org

$a->baz;

package Mydbm;

require SDBM_File;
require Tie::Hash;
@ISA = qw(Tie::Hash);

sub TIEHASH {
my $type = shift;
my $ref = SDBM_File->new(@_);
bless {’delegate’ => $ref};
}

sub AUTOLOAD {
my $self = shift;

The Perl interpreter places the name of the
message in a variable called $AUTOLOAD.

DESTROY messages should never be propagated.
return if $AUTOLOAD =~ /::DESTROY$/;

Remove the package name.
$AUTOLOAD =~ s/^Mydbm:://;

Pass the message to the delegate.
$self->{’delegate’}->$AUTOLOAD(@_);
}

package main;
use Fcntl qw(O_RDWR O_CREAT);

tie %foo, "Mydbm", "adbm", O_RDWR|O_CREAT, 0640;
$foo{’bar’} = 123;
print "foo-bar = $foo{’bar’}\n";

DELEGATION

SEE ALSO
perlboot perltoot perltooc

