
overload - Package for overloading perl operations

The compilation directive

declares function Number::add() for addition, and method muas() in the "class" (or one of its
base classes) for the assignment form of multiplication.

Arguments of this directive come in (key, value) pairs. Legal values are values legal inside a
call, so the name of a subroutine, a reference to a subroutine, or an anonymous subroutine will all

work. Note that values specified as strings are interpreted as methods, not subroutines. Legal keys
are listed below.

The subroutine will be called to execute if $a is a reference to an object blessed into the
package , or if $a is not an object from a package with defined mathemagic addition, but $b is
a reference to a . It can also be called in other situations, like , or . See

. (Mathemagical methods refer to methods triggered by an overloaded
mathematical operator.)

Since overloading respects inheritance via the @ISA hierarchy, the above declaration would also
trigger overloading of and in all the packages which inherit from .

The functions specified in the directive are called with three (in one particular
case with four, see) arguments. If the corresponding operation is binary, then the first two
arguments are the two arguments of the operation. However, due to general object calling
conventions, the first argument should always be an object in the package, so in the situation of
, the order of the arguments is interchanged. It probably does not matter when implementing the
addition method, but whether the arguments are reversed is vital to the subtraction method. The
method can query this information by examining the third argument, which can take three different

Perl version 5.8.6 documentation - overload

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

package SomeThing;

use overload
’+’ => \&myadd,
’-’ => \&mysub;
etc

...

package main;
$a = new SomeThing 57;
$b=5+$a;
...
if (overload::Overloaded $b) {...}
...
$strval = overload::StrVal $b;

package Number;
use overload

"+" => \&add,
"*=" => "muas";

Declaration of overloaded functions

Calling Conventions for Binary Operations

Number
*=

&{ ...
}

add $a+$b
Number

Number $a+=7 $a++

+ *= Number

use overload ...

7+$a

MAGIC
AUTOGENERATION

Last Resort

values:FALSE

the order of arguments is as in the current operation.

TRUE

the arguments are reversed.

the current operation is an assignment variant (as in), but the usual function is
called instead. This additional information can be used to generate some optimizations.
Compare .

Unary operation are considered binary operations with the second argument being . Thus the
functions that overloads is called with arguments when $a++ is executed.

Two types of mutators have different calling conventions:

and

The routines which implement these operators are expected to actually their
arguments. So, assuming that $obj is a reference to a number,

is an appropriate implementation of overloaded . Note that

is OK if used with preincrement and with postincrement. (In the case of postincrement a
copying will be performed, see .)

and other assignment versions

There is nothing special about these methods. They may change the value of their arguments,
and may leave it as is. The result is going to be assigned to the value in the left-hand-side if
different from this value.

This allows for the same method to be used as overloaded and . Note that this is ,
but not recommended, since by the semantic of Perl will call the method for
anyway, if is not overloaded.

Due to the presence of assignment versions of operations, routines which may be called in
assignment context may create self-referential structures. Currently Perl will not free self-referential
structures until cycles are broken. You may get problems when traversing your
structures too.

Say,

is asking for trouble, since for code the subroutine is called as
, or . If using such a subroutine is an important

optimization, one can overload explicitly by a non-"optimized" version, or switch to non-optimized
version if (see).

Even if no assignment-variants of operators are present in the script, they may be generated
by the optimizer. Say, or may be both optimized to

Perl version 5.8.6 documentation - overload

Page 2http://perldoc.perl.org

undef

$a+=7

undef
{"++"} ($a,undef,’’)

++ --

++

x=

+= +
+

+=

explicitly

$obj += $foo $obj = add($obj,
$foo, undef) $obj = [\$obj, \$foo]

+=
not defined $_[2]

",$obj," ’,’ . $obj . ’,’

Calling Conventions for Mutators

mutate

Copy Constructor

allowed
Fallback

Calling Conventions for Binary Operations

explicit

Calling Conventions for Unary Operations

Calling Conventions for Mutators

sub incr { my $n = $ {$_[0]}; ++$n; $_[0] = bless \$n}

sub incr { ++$ {$_[0]} ; shift }

use overload ’+’ => sub { bless [\$_[0], \$_[1]] };

my $tmp = ’,’ . $obj; $tmp .= ’,’;

Warning.

The following symbols can be specified in directive:

*

For these operations a substituted non-assignment variant can be called if the assignment
variant is not available. Methods for operations , , , and can be called to
automatically generate increment and decrement methods. The operation can be used to
autogenerate missing methods for unary minus or .

See , and
) for details of these substitutions.

*

If the corresponding "spaceship" variant is available, it can be used to substitute for the
missing operation. During ing arrays, is used to compare values subject to

.

*

stands for unary minus. If the method for is not specified, it can be autogenerated
using the method for subtraction. If the method for is not specified, it can be
autogenerated using the methods for , or , or .

*

If undefined, addition and subtraction methods can be used instead. These operations are
called both in prefix and postfix form.

*

If is unavailable, it can be autogenerated using methods for "<" or "<=>" combined with
either unary minus or subtraction.

Note that traditionally the Perl function rounds to 0, thus for floating-point-like types one
should follow the same semantic. If is unavailable, it can be autogenerated using the
overloading of .

*

If one or two of these operations are not overloaded, the remaining ones can be used
instead. is used in the flow control operators (like) and for the ternary
operation. These functions can return any arbitrary Perl value. If the corresponding
operation for this value is overloaded too, that operation will be called again with this value.

As a special case if the overload returns the object itself then it will be used directly. An
overloaded conversion returning the object is probably a bug, because you're likely to get
something that looks like .

Perl version 5.8.6 documentation - overload

Page 3http://perldoc.perl.org

Overloadable Operations
use overload

+ - += -=
-

abs

sort cmp use
overload

neg neg
!

bool "" 0+

abs

int
0+

bool while ?:

YourPackage=HASH(0x8172b34)

Arithmetic operations

MAGIC AUTOGENERATION Calling Conventions for Mutators Calling
Conventions for Binary Operations

Comparison operations

Bit operations

Increment and decrement

Transcendental functions

int

Boolean, string and numeric conversion

"+", "+=", "-", "-=", "*", "*=", "/", "/=", "%", "%=",
"**", "**=", "<<", "<<=", ">>", ">>=", "x", "x=", ".", ".=",

"<", "<=", ">", ">=", "==", "!=", "<=>",
"lt", "le", "gt", "ge", "eq", "ne", "cmp",

"&", "^", "|", "neg", "!", "~",

"++", "--",

"atan2", "cos", "sin", "exp", "abs", "log", "sqrt", "int"

’bool’, ’""’, ’0+’,

*

If not overloaded, the argument will be converted to a filehandle or glob (which may require
a stringification). The same overloading happens both for the syntax
and syntax .

Even in list context, the iterator is currently called only once and with scalar context.

*

If not overloaded, the argument will be dereferenced , thus should be of correct type.
These functions should return a reference of correct type, or another object with overloaded
dereferencing.

As a special case if the overload returns the object itself then it will be used directly
(provided it is the correct type).

The dereference operators must be specified explicitly they will not be passed to
"nomethod".

*

see .

See for an explanation of when a missing method can be autogenerated.

A computer-readable form of the above table is available in the hash %overload::ops, with values
being space-separated lists of names:

Inheritance interacts with overloading in two ways.

Strings as values of directive

If in

is a string, it is interpreted as a method name.

Overloading of an operation is inherited by derived classes

Any class derived from an overloaded class is also overloaded. The set of overloaded
methods is the union of overloaded methods of all the ancestors. If some method is

Perl version 5.8.6 documentation - overload

Page 4http://perldoc.perl.org

Iteration

read-filehandle
globbing

Dereferencing

as is

Special

SPECIAL SYMBOLS FOR

Fallback

"<>"

’${}’, ’@{}’, ’%{}’, ’&{}’, ’*{}’.

"nomethod", "fallback", "=",

with_assign => ’+ - * / % ** << >> x .’,
assign => ’+= -= *= /= %= **= <<= >>= x= .=’,
num_comparison => ’< <= > >= == !=’,
’3way_comparison’=> ’<=> cmp’,
str_comparison => ’lt le gt ge eq ne’,
binary => ’& | ^’,
unary => ’neg ! ~’,
mutators => ’++ --’,
func => ’atan2 cos sin exp abs log sqrt’,
conversion => ’bool "" 0+’,
iterators => ’<>’,
dereferencing => ’${} @{} %{} &{} *{}’,
special => ’nomethod fallback =’

use overload key => value;

<$var>
<${var}>

use overload

value

BUGS

use overload

Inheritance and overloading

overloaded in several ancestor, then which description will be used is decided by the usual
inheritance rules:

If inherits from and (in this order), overloads with , and overloads
by , then the subroutine will be called to implement operation
for an object in package .

Note that since the value of the key is not a subroutine, its inheritance is not governed by
the above rules. In the current implementation, the value of in the first overloaded ancestor
is used, but this is accidental and subject to change.

Three keys are recognized by Perl that are not covered by the above description.

should be followed by a reference to a function of four parameters. If defined, it is called
when the overloading mechanism cannot find a method for some operation. The first three arguments
of this function coincide with the arguments for the corresponding method if it were found, the fourth
argument is the symbol corresponding to the missing method. If several methods are tried, the last
one is used. Say, can be equivalent to

if the pair was specified in the directive.

The mechanism is used for the dereference operators (${} @{} %{} &{} *{}).

If some operation cannot be resolved, and there is no function assigned to , then an
exception will be raised via die()-- unless was specified as a key in
directive.

The key governs what to do if a method for a particular operation is not found. Three
different cases are possible depending on the value of :

*

Perl tries to use a substituted method (see
). If this fails, it then tries to calls

value; if missing, an exception will be raised.

* TRUE

The same as for the value, but no exception is raised. Instead, it
silently reverts to what it would have done were there no

present.

* defined, but FALSE

No autogeneration is tried. Perl tries to call value, and if
this is missing, raises an exception.

inheritance via @ISA is not carved in stone yet, see .

The value for is a reference to a function with three arguments, i.e., it looks like the other values
in . However, it does not overload the Perl assignment operator. This would go
against Camel hair.

This operation is called in the situations when a mutator is applied to a reference that shares its object
with some other reference, such as

Perl version 5.8.6 documentation - overload

Page 5http://perldoc.perl.org

A B C B + \&D::plus_sub C
+ "plus_meth" D::plus_sub
+ A

fallback
fallback

"nomethod"

1-$a

"nomethod" => "nomethodMethod" use overload

"nomethod"

"nomethod"
"fallback" use overload

"fallback"
"fallback"

undef

"nomethod"

undef
use

overload

"nomethod"

"fallback"

"="
use overload

SPECIAL SYMBOLS FOR use overload

Last Resort

Fallback

Copy Constructor

&nomethodMethod($a,1,1,"-")

not

MAGIC
AUTOGENERATION

Inheritance and overloadingNote.

To make this change $a and not change $b, a copy of is made, and $a is assigned a reference to
this new object. This operation is done during execution of the , and not during the assignment,
(so before the increment coincides with). This is only done if is expressed via a method
for or (or). Note that if this operation is expressed via a nonmutator, i.e.,
as in

then does not reference a new copy of , since $$a does not appear as lvalue when the above
code is executed.

If the copy constructor is required during the execution of some mutator, but a method for was
not specified, it can be autogenerated as a string copy if the object is a plain scalar.

The actually executed code for

may be

if $b was mathemagical, and was overloaded with , was overloaded with
.

Same behaviour is triggered by , which is consider a synonym for .

If a method for an operation is not found, and the value for is TRUE or undefined, Perl
tries to autogenerate a substitute method for the missing operation based on the defined operations.
Autogenerated method substitutions are possible for the following operations:

can use the method for if the method for is not
defined.

String, numeric, and boolean conversion are calculated in terms of one
another if not all of them are defined.

The operation can be expressed in terms of or , and
in terms of and .

can be expressed in terms of and (or).

Perl version 5.8.6 documentation - overload

Page 6http://perldoc.perl.org

$a=$b;
++$a;

$a=$b;
$a=$a+1;

$a=$b;
Something else which does not modify $a or $b....

++$a;

$a=$b;
Something else which does not modify $a or $b....

$a = $a->clone(undef,"");
$a->incr(undef,"");

$$a
++$a

$$a $$b ++
’++’ ’+=’ nomethod ’+’

$a $$a

’=’

’++’ \&incr ’=’
\&clone

$b = $a++ $b = $a; ++$a

"fallback"

$a+=$b "+" "+="

++$a $a+=1 $a+1
$a-- $a-=1 $a-1

abs($a)

$a<0 -$a 0-$a

Example

MAGIC AUTOGENERATION

Assignment forms of arithmetic operations

Conversion operations

Increment and decrement

Unary minus

can be expressed in terms of subtraction.

and can be expressed in terms of boolean conversion, or string
or numerical conversion.

can be expressed in terms of string conversion.

can be expressed in terms of its "spaceship" counterpart: either or
:

can be expressed in terms of an assignment to the dereferenced value,
if this value is a scalar and not a reference.

The restriction for the comparison operation is that even if, for example, ` ' should return a blessed
reference, the autogenerated ` ' function will produce only a standard logical value based on the
numerical value of the result of ` '. In particular, a working numeric conversion is needed in this
case (possibly expressed in terms of other conversions).

Similarly, and operators lose their mathemagical properties if the string conversion substitution
is applied.

When you chop() a mathemagical object it is promoted to a string and its mathemagical properties are
lost. The same can happen with other operations as well.

Since all directives are executed at compile-time, the only way to change overloading during
run-time is to

You can also use

though the use of these constructs during run-time is questionable.

Package provides the following public functions:

overload::StrVal(arg)

Perl version 5.8.6 documentation - overload

Page 7http://perldoc.perl.org

Negation

Concatenation

Comparison operations

Iterator

Dereferencing

Copy operator

! not

<=>
cmp

cmp
lt
cmp

.= x=

use

overload.pm

<, >, <=, >=, ==, != in terms of <=>
lt, gt, le, ge, eq, ne in terms of cmp

<> in terms of builtin operations

${} @{} %{} &{} *{} in terms of builtin
operations

eval ’use overload "+" => \&addmethod’;

eval ’no overload "+", "--", "<="’;

Losing overloading

Run-time Overloading

Public functions

Gives string value of as in absence of stringify overloading. If you are using this to get
the address of a reference (useful for checking if two references point to the same thing)
then you may be better off using , which is faster.

overload::Overloaded(arg)

Returns true if is subject to overloading of some operations.

overload::Method(obj,op)

Returns or a reference to the method that implements .

For some application Perl parser mangles constants too much. It is possible to hook into this process
via overload::constant() and overload::remove_constant() functions.

These functions take a hash as an argument. The recognized keys of this hash are

integer

to overload integer constants,

float

to overload floating point constants,

binary

to overload octal and hexadecimal constants,

q

to overload -quoted strings, constant pieces of - and -quoted strings and
here-documents,

qr

to overload constant pieces of regular expressions.

The corresponding values are references to functions which take three arguments: the first one is the
string form of the constant, the second one is how Perl interprets this constant, the third one is

how the constant is used. Note that the initial string form does not contain string delimiters, and has
backslashes in backslash-delimiter combinations stripped (thus the value of delimiter is not relevant
for processing of this string). The return value of this function is how this constant is going to be
interpreted by Perl. The third argument is undefined unless for overloaded - and - constants, it is

in single-quote context (comes from strings, regular expressions, and single-quote HERE
documents), it is for arguments of / operators, it is for right-hand side of -operator, and it is

otherwise.

Since an expression is just a shortcut for , it is expected that
overloaded constant strings are equipped with reasonable overloaded catenation operator, otherwise
absurd results will result. Similarly, negative numbers are considered as negations of positive
constants.

Note that it is probably meaningless to call the functions overload::constant() and
overload::remove_constant() from anywhere but import() and unimport() methods. From these
methods they may be called as

Perl version 5.8.6 documentation - overload

Page 8http://perldoc.perl.org

arg

Scalar::Util::refaddr()

arg

undef op

q qq qx

q qr
q

tr tr y s s
qq

"ab$cd,," ’ab’ . $cd . ’,,’

Overloading constants

initial

sub import {
shift;
return unless @_;
die "unknown import: @_" unless @_ == 1 and $_[0] eq ’:constant’;
overload::constant integer => sub {Math::BigInt->new(shift)};

}

Currently overloaded-ness of constants does not propagate into .

What follows is subject to change RSN.

The table of methods for all operations is cached in magic for the symbol table hash for the package.
The cache is invalidated during processing of , , new function
definitions, and changes in @ISA. However, this invalidation remains unprocessed until the next

ing into the package. Hence if you want to change overloading structure dynamically, you'll
need an additional (fake) ing to update the table.

(Every SVish thing has a magic queue, and magic is an entry in that queue. This is how a single
variable may participate in multiple forms of magic simultaneously. For instance, environment
variables regularly have two forms at once: their %ENV magic and their taint magic. However, the
magic which implements overloading is applied to the stashes, which are rarely used directly, thus
should not slow down Perl.)

If an object belongs to a package using overload, it carries a special flag. Thus the only speed penalty
during arithmetic operations without overloading is the checking of this flag.

In fact, if is not present, there is almost no overhead for overloadable operations, so
most programs should not suffer measurable performance penalties. A considerable effort was made
to minimize the overhead when overload is used in some package, but the arguments in question do
not belong to packages using overload. When in doubt, test your speed with and
without it. So far there have been no reports of substantial speed degradation if Perl is compiled with
optimization turned on.

There is no size penalty for data if overload is not used. The only size penalty if overload is used in
some package is that the packages acquire a magic during the next ing into the package.
This magic is three-words-long for packages without overloading, and carries the cache table if the
package is overloaded.

Copying () is shallow; however, a one-level-deep copying is carried out before any operation
that can imply an assignment to the object $a (or $b) refers to, like . You can override this
behavior by defining your own copy constructor (see).

It is expected that arguments to methods that are not explicitly supposed to be changed are constant
(but this is not enforced).

One may wonder why the semantic of overloaded is so counter intuitive. If it counter intuitive
to you, you are subject to a metaphor clash.

Here is a Perl object metaphor:

and an arithmetic metaphor:

.

The problem of overloading is the fact that these metaphors imply different actions on the
assignment if $a and $b are objects. Perl-think implies that $a becomes a reference to
whatever $b was referencing. Arithmetic-think implies that the value of "object" $a is changed to
become the value of the object $b, preserving the fact that $a and $b are separate entities.

The difference is not relevant in the absence of mutators. After a Perl-way assignment an operation
which mutates the data referenced by $a would change the data referenced by $b too. Effectively,
after values of $a and $b become .

Perl version 5.8.6 documentation - overload

Page 9http://perldoc.perl.org

BUGS eval ’...’

use overload no overload

bless
bless

use overload

use overload

bless

$a=$b
$a++

=

=
$a = $b

$a = $b

IMPLEMENTATION

Metaphor clash

all

Copy Constructor

looks

object is a reference to blessed data

object is a thing by itself

main

indistinguishable

On the other hand, anyone who has used algebraic notation knows the expressive power of the
arithmetic metaphor. Overloading works hard to enable this metaphor while preserving the Perlian
way as far as possible. Since it is not possible to freely mix two contradicting metaphors, overloading
allows the arithmetic way to write things

. The way it is done is described in .

If some mutator methods are directly applied to the overloaded values, one may need to
other values which references the same value:

Note that overloaded access makes this transparent:

However, it would not make

preserve "objectness" of $a. But Perl a way to make assignments to an object do whatever you
want. It is just not the overload, but tie()ing interface (see). Adding a FETCH() method
which returns the object itself, and STORE() method which changes the value of the object, one can
reproduce the arithmetic metaphor in its completeness, at least for variables which were tie()d from
the start.

(Note that a workaround for a bug may be needed, see .)

Please add examples to what follows!

Put this in in your Perl library directory:

Use it as follows:

(The second line creates a scalar which has both a string value, and a numeric value.) This prints:

Perl version 5.8.6 documentation - overload

Page 10http://perldoc.perl.org

as far as all the mutators are called via overloaded access
only Copy Constructor

explicitly
unlink

has
"tie" in perlfunc

BUGS

two_face.pm

$a = new Data 23;
...
$b = $a; # $b is "linked" to $a
...
$a = $a->clone; # Unlink $b from $a
$a->increment_by(4);

$a = new Data 23;
$b = $a; # $b is "linked" to $a
$a += 4; # would unlink $b automagically

$a = new Data 23;
$a = 4; # Now $a is a plain 4, not ’Data’

package two_face; # Scalars with separate string and
numeric values.

sub new { my $p = shift; bless [@_], $p }
use overload ’""’ => \&str, ’0+’ => \&num, fallback => 1;
sub num {shift->[1]}
sub str {shift->[0]}

require two_face;
my $seven = new two_face ("vii", 7);
printf "seven=$seven, seven=%d, eight=%d\n", $seven, $seven+1;
print "seven contains ‘i’\n" if $seven =~ /i/;

Cookbook

Two-face scalars

Suppose you want to create an object which is accessible as both an array reference and a hash
reference, similar to the builtin Perl type. Let's make it better than a pseudo-hash by
allowing index 0 to be treated as a normal element.

Now one can access an object using both the array and hash syntax:

Note several important features of this example. First of all, the type of $bar is a scalar
reference, and we do not overload the scalar dereference. Thus we can get the
non-overloaded contents of $bar by just using (what we do in functions which overload
dereference). Similarly, the object returned by the TIEHASH() method is a scalar reference.

Second, we create a new tied hash each time the hash syntax is used. This allows us not to worry
about a possibility of a reference loop, which would lead to a memory leak.

Both these problems can be cured. Say, if we want to overload hash dereference on a reference to an
object which is as a hash itself, the only problem one has to circumvent is how to access
this hash (as opposed to the hash exhibited by the overloaded dereference operator).
Here is one possible fetching routine:

Perl version 5.8.6 documentation - overload

Page 11http://perldoc.perl.org

seven=vii, seven=7, eight=8
seven contains ‘i’

package two_refs;
use overload ’%{}’ => \&gethash, ’@{}’ => sub { $ {shift()} };
sub new {
my $p = shift;
bless \ [@_], $p;

}
sub gethash {
my %h;
my $self = shift;
tie %h, ref $self, $self;
\%h;

}

sub TIEHASH { my $p = shift; bless \ shift, $p }
my %fields;
my $i = 0;
$fields{$_} = $i++ foreach qw{zero one two three};
sub STORE {
my $self = ${shift()};
my $key = $fields{shift()};
defined $key or die "Out of band access";
$$self->[$key] = shift;

}
sub FETCH {
my $self = ${shift()};
my $key = $fields{shift()};
defined $key or die "Out of band access";
$$self->[$key];

}

my $bar = new two_refs 3,4,5,6;
$bar->[2] = 11;
$bar->{two} == 11 or die ’bad hash fetch’;

Two-face references

pseudo-hash

actual
actual

implemented
actual virtual

$$bar

To remove creation of the tied hash on each access, one may an extra level of indirection which
allows a non-circular structure of references:

Now if $baz is overloaded like this, then is a reference to a reference to the intermediate array,
which keeps a reference to an actual array, and the access hash. The tie()ing object for the access
hash is a reference to a reference to the actual array, so

There are no loops of references.

Both "objects" which are blessed into the class are references to a reference to
an array, thus references to a . Thus the accessor expression
involves no overloaded operations.

Perl version 5.8.6 documentation - overload

Page 12http://perldoc.perl.org

sub access_hash {
my ($self, $key) = (shift, shift);
my $class = ref $self;
bless $self, ’overload::dummy’; # Disable overloading of %{}
my $out = $self->{$key};
bless $self, $class; # Restore overloading
$out;

}

package two_refs1;
use overload ’%{}’ => sub { ${shift()}->[1] },

’@{}’ => sub { ${shift()}->[0] };
sub new {
my $p = shift;
my $a = [@_];
my %h;
tie %h, $p, $a;
bless \ [$a, \%h], $p;

}
sub gethash {
my %h;
my $self = shift;
tie %h, ref $self, $self;
\%h;

}

sub TIEHASH { my $p = shift; bless \ shift, $p }
my %fields;
my $i = 0;
$fields{$_} = $i++ foreach qw{zero one two three};
sub STORE {
my $a = ${shift()};
my $key = $fields{shift()};
defined $key or die "Out of band access";
$a->[$key] = shift;

}
sub FETCH {
my $a = ${shift()};
my $key = $fields{shift()};
defined $key or die "Out of band access";
$a->[$key];

}

$baz

two_refs1
$$foo->[$ind]scalar

Put this in in your Perl library directory:

This module is very unusual as overloaded modules go: it does not provide any usual overloaded
operators, instead it provides the operator . In this example the corresponding
subroutine returns an object which encapsulates operations done over the objects:

contains , contains .

Here is an example of the script which "calculates" the side of circumscribed octagon using the above
package:

The value of $side is

Note that while we obtained this value using a nice little script, there is no simple way to this
value. In fact this value may be inspected in debugger (see), but ony if
ption is set, and not via command.

If one attempts to print this value, then the overloaded operator will be called, which will call
operator. The result of this operator will be stringified again, but this result is again of type
, which will lead to an infinite loop.

Add a pretty-printer method to the module :

Now one can finish the script by

Perl version 5.8.6 documentation - overload

Page 13http://perldoc.perl.org

Symbolic calculator
symbolic.pm

Last Resort

use
perldebug

symbolic.pm

package symbolic; # Primitive symbolic calculator
use overload nomethod => \&wrap;

sub new { shift; bless [’n’, @_] }
sub wrap {
my ($obj, $other, $inv, $meth) = @_;
($obj, $other) = ($other, $obj) if $inv;
bless [$meth, $obj, $other];

}

require symbolic;
my $iter = 1; # 2**($iter+2) = 8
my $side = new symbolic 1;
my $cnt = $iter;

while ($cnt--) {
$side = (sqrt(1 + $side**2) - 1)/$side;

}
print "OK\n";

[’/’, [’-’, [’sqrt’, [’+’, 1, [’**’, [’n’, 1], 2]],
undef], 1], [’n’, 1]]

sub pretty {
my ($meth, $a, $b) = @{+shift};
$a = ’u’ unless defined $a;
$b = ’u’ unless defined $b;
$a = $a->pretty if ref $a;
$b = $b->pretty if ref $b;
"[$meth $a $b]";

}

nomethod
new symbolic

3 [’n’, 3] 2 + new symbolic 3 [’+’, 2, [’n’, 3]]

bareStringify
p

""
nomethod
symbolic

O

The method is doing object-to-string conversion, so it is natural to overload the operator
using this method. However, inside such a method it is not necessary to pretty-print the
$a and $b of an object. In the above subroutine is a catenation of some strings
and components $a and $b. If these components use overloading, the catenation operator will look for
an overloaded operator ; if not present, it will look for an overloaded operator . Thus it is enough
to use

Now one can change the last line of the script to

which outputs

and one can inspect the value in debugger using all the possible methods.

Something is still amiss: consider the loop variable $cnt of the script. It was a number, not an object.
We cannot make this value of type , since then the loop will not terminate.

Indeed, to terminate the cycle, the $cnt should become false. However, the operator for
checking falsity is overloaded (this time via overloaded), and returns a long string, thus any object
of type is true. To overcome this, we need a way to compare an object to 0. In fact, it is
easier to write a numeric conversion routine.

Here is the text of with such a routine added (and slightly modified str()):

Perl version 5.8.6 documentation - overload

Page 14http://perldoc.perl.org

print "side = ", $side->pretty, "\n";

use overload nomethod => \&wrap, ’""’ => \&str;
sub str {
my ($meth, $a, $b) = @{+shift};
$a = ’u’ unless defined $a;
$b = ’u’ unless defined $b;
"[$meth $a $b]";

}

print "side = $side\n";

side = [/ [- [sqrt [+ 1 [** [n 1 u] 2]] u] 1] [n 1 u]]

package symbolic; # Primitive symbolic calculator
use overload
nomethod => \&wrap, ’""’ => \&str, ’0+’ => \#

sub new { shift; bless [’n’, @_] }
sub wrap {
my ($obj, $other, $inv, $meth) = @_;
($obj, $other) = ($other, $obj) if $inv;
bless [$meth, $obj, $other];

}
sub str {
my ($meth, $a, $b) = @{+shift};
$a = ’u’ unless defined $a;
if (defined $b) {
"[$meth $a $b]";

} else {
"[$meth $a]";

}
}
my %subr = (n => sub {$_[0]},

pretty ""

"[$meth $a $b]"

. ""

symbolic

bool
""

symbolic

components

symbolic.pm

All the work of numeric conversion is done in %subr and num(). Of course, %subr is not complete, it
contains only operators used in the example below. Here is the extra-credit question: why do we need
an explicit recursion in num()? (Answer is at the end of this section.)

Use this module like this:

It prints (without so many line breaks)

The above module is very primitive. It does not implement mutator methods (, and so on), does
not do deep copying (not required without mutators!), and implements only those arithmetic
operations which are used in the example.

To implement most arithmetic operations is easy; one should just use the tables of operations, and
change the code which fills %subr to

Perl version 5.8.6 documentation - overload

Page 15http://perldoc.perl.org

sqrt => sub {sqrt $_[0]},
’-’ => sub {shift() - shift()},
’+’ => sub {shift() + shift()},
’/’ => sub {shift() / shift()},
’*’ => sub {shift() * shift()},
’**’ => sub {shift() ** shift()},

);
sub num {
my ($meth, $a, $b) = @{+shift};
my $subr = $subr{$meth}
or die "Do not know how to ($meth) in symbolic";

$a = $a->num if ref $a eq __PACKAGE__;
$b = $b->num if ref $b eq __PACKAGE__;
$subr->($a,$b);

}

require symbolic;
my $iter = new symbolic 2; # 16-gon
my $side = new symbolic 1;
my $cnt = $iter;

while ($cnt) {
$cnt = $cnt - 1; # Mutator ‘--’ not implemented
$side = (sqrt(1 + $side**2) - 1)/$side;

}
printf "%s=%f\n", $side, $side;
printf "pi=%f\n", $side*(2**($iter+2));

[/ [- [sqrt [+ 1 [** [/ [- [sqrt [+ 1 [** [n 1] 2]]] 1]
[n 1]] 2]]] 1]
[/ [- [sqrt [+ 1 [** [n 1] 2]]] 1] [n 1]]]=0.198912

pi=3.182598

my %subr = (’n’ => sub {$_[0]});
foreach my $op (split " ", $overload::ops{with_assign}) {
$subr{$op} = $subr{"$op="} = eval "sub {shift() $op shift()}";

}
my @bins = qw(binary 3way_comparison num_comparison str_comparison);
foreach my $op (split " ", "@overload::ops{ @bins }") {
$subr{$op} = eval "sub {shift() $op shift()}";

}

++ -=

Due to , we do not need anything special to make and friends
work, except filling entry of %subr, and defining a copy constructor (needed since Perl has no way
to know that the implementation of does not mutate the argument, compare).

To implement a copy constructor, add to line, and code (this code
assumes that mutators change things one level deep only, so recursive copying is not needed):

To make and work, we need to implement actual mutators, either directly, or in . We
continue to do things inside , thus add

after the first line of wrap(). This is not a most effective implementation, one may consider

instead.

As a final remark, note that one can fill %subr by

This finishes implementation of a primitive symbolic calculator in 50 lines of Perl code. Since the
numeric values of subexpressions are not cached, the calculator is very slow.

Here is the answer for the exercise: In the case of str(), we need no explicit recursion since the
overloaded -operator will fall back to an existing overloaded operator . Overloaded arithmetic
operators fall back to numeric conversion if is not explicitly requested. Thus without
an explicit recursion num() would convert to , which would just rebuild the
argument of num().

If you wonder why defaults for conversion are different for str() and num(), note how easy it was to

Perl version 5.8.6 documentation - overload

Page 16http://perldoc.perl.org

foreach my $op (split " ", "@overload::ops{qw(unary func)}") {
print "defining ‘$op’\n";
$subr{$op} = eval "sub {$op shift()}";

}

sub cpy {
my $self = shift;
bless [@$self], ref $self;

}

if ($meth eq ’++’ or $meth eq ’--’) {
@$obj = ($meth, (bless [@$obj]), 1); # Avoid circular reference
return $obj;

}

sub inc { $_[0] = bless [’++’, shift, 1]; }

my %subr = (’n’ => sub {$_[0]});
foreach my $op (split " ", $overload::ops{with_assign}) {
$subr{$op} = $subr{"$op="} = eval "sub {shift() $op shift()}";

}
my @bins = qw(binary 3way_comparison num_comparison str_comparison);
foreach my $op (split " ", "@overload::ops{ @bins }") {
$subr{$op} = eval "sub {shift() $op shift()}";

}
foreach my $op (split " ", "@overload::ops{qw(unary func)}") {
$subr{$op} = eval "sub {$op shift()}";

}
$subr{’++’} = $subr{’+’};
$subr{’--’} = $subr{’-’};

Calling Conventions for Mutators

Copy Constructor

do not

+=
+=

’+=’

’=’ => \&cpy use overload

++ -- nomethod
nomethod

. ""
fallback

[’+’, $a, $b] $a + $b

write the symbolic calculator. This simplicity is due to an appropriate choice of defaults. One extra
note: due to the explicit recursion num() is more fragile than sym(): we need to explicitly check for the
type of $a and $b. If components $a and $b happen to be of some related type, this may lead to
problems.

One may wonder why we call the above calculator symbolic. The reason is that the actual calculation
of the value of expression is postponed until the value is .

To see it in action, add a method

to the package . After this change one can do

and the numeric value of $c becomes 5. However, after calling

the numeric value of $c becomes 13. There is no doubt now that the module symbolic provides a
calculator indeed.

To hide the rough edges under the hood, provide a tie()d interface to the package
(compare with). Add methods

(the bug is described in). One can use this new interface as

Now numeric value of $c is 5. After the numeric value of $c becomes 13. To
insulate the user of the module add a method

Now

Perl version 5.8.6 documentation - overload

Page 17http://perldoc.perl.org

Really symbolic calculator

used

symbolic

Metaphor clash

BUGS

sub STORE {
my $obj = shift;
$#$obj = 1;
@$obj->[0,1] = (’=’, shift);

}

my $a = new symbolic 3;
my $b = new symbolic 4;
my $c = sqrt($a**2 + $b**2);

$a->STORE(12); $b->STORE(5);

sub TIESCALAR { my $pack = shift; $pack->new(@_) }
sub FETCH { shift }
sub nop { } # Around a bug

tie $a, ’symbolic’, 3;
tie $b, ’symbolic’, 4;
$a->nop; $b->nop; # Around a bug

my $c = sqrt($a**2 + $b**2);

sub vars { my $p = shift; tie($_, $p), $_->nop foreach @_; }

my ($a, $b);
symbolic->vars($a, $b);
my $c = sqrt($a**2 + $b**2);

symbolic

symbolic

$a = 12; $b = 5

shows that the numeric value of $c follows changes to the values of $a and $b.

Ilya Zakharevich < >.

When Perl is run with the switch or its equivalent, overloading induces diagnostic messages.

Using the command of Perl debugger (see) one can deduce which operations are
overloaded (and which ancestor triggers this overloading). Say, if is overloaded, then the method

is shown by debugger. The method corresponds to the key (in fact a presence of
this method shows that this package has overloading enabled, and it is what is used by the

function of module).

The module might issue the following warnings:

Odd number of arguments for overload::constant

(W) The call to overload::constant contained an odd number of arguments. The arguments
should come in pairs.

`%s' is not an overloadable type

(W) You tried to overload a constant type the overload package is unaware of.

`%s' is not a code reference

(W) The second (fourth, sixth, ...) argument of overload::constant needs to be a code
reference. Either an anonymous subroutine, or a reference to a subroutine.

Because it is used for overloading, the per-package hash %OVERLOAD now has a special meaning
in Perl. The symbol table is filled with names looking like line-noise.

For the purpose of inheritance every overloaded package behaves as if is present
(possibly undefined). This may create interesting effects if some package is not overloaded, but
inherits from two overloaded packages.

Relation between overloading and tie()ing is broken. Overloading is triggered or not basing on the
class of tie()d value.

This happens because the presence of overloading is checked too early, before any tie()d access is
attempted. If the FETCH()ed class of the tie()d value does not change, a simple workaround is to
access the value immediately after tie()ing, so that after this call the class coincides with the
current one.

a way to fix this without a speed penalty.

Barewords are not covered by overloaded string constants.

This document is confusing. There are grammos and misleading language used in places. It would
seem a total rewrite is needed.

Perl version 5.8.6 documentation - overload

Page 18http://perldoc.perl.org

$a = 3; $b = 4;
printf "c5 %s=%f\n", $c, $c;

$a = 12; $b = 5;
printf "c13 %s=%f\n", $c, $c;

AUTHOR

DIAGNOSTICS

BUGS

ilya@math.mps.ohio-state.edu

perldebug

previous

previous

-Do

Needed:

m
eq

(eq () fallback

Overloaded overload

fallback

