
encoding - allows you to write your script in non-ascii or non-utf8

Let's start with a bit of history: Perl 5.6.0 introduced Unicode support. You could apply and
regexes even to complex CJK characters -- so long as the script was written in UTF-8. But back then,
text editors that supported UTF-8 were still rare and many users instead chose to write scripts in
legacy encodings, giving up a whole new feature of Perl 5.6.

Rewind to the future: starting from perl 5.8.0 with the pragma, you can write your script in
any encoding you like (so long as the module supports it) and still enjoy Unicode support.
This pragma achieves that by doing the following:

Internally converts all literals () from the encoding specified
to utf8. In Perl 5.8.1 and later, literals in and pseudo-filehandle are also
converted.

Changing PerlIO layers of and to the encoding specified.

Perl version 5.8.6 documentation - encoding

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

ABSTRACT

use encoding "greek"; # Perl like Greek to you?
use encoding "euc-jp"; # Jperl!

or you can even do this if your shell supports your native encoding

perl -Mencoding=latin2 -e ’...’ # Feeling centrally European?
perl -Mencoding=euc-kr -e ’...’ # Or Korean?

more control

A simple euc-cn => utf-8 converter
use encoding "euc-cn", STDOUT => "utf8"; while(<>){print};

"no encoding;" supported (but not scoped!)
no encoding;

an alternate way, Filter
use encoding "euc-jp", Filter=>1;
now you can use kanji identifiers -- in euc-jp!

switch on locale -
note that this probably means that unless you have a complete control
over the environments the application is ever going to be run, you

should
NOT use the feature of encoding pragma allowing you to write your

script
in any recognized encoding because changing locale settings will wreck
the script; you can of course still use the other features of the

pragma.
use encoding ’:locale’;

substr()

Encode

q//,qq//,qr//,qw///, qx//
tr/// DATA

STDIN STDOUT

encoding

You can write code in EUC-JP as follows:

And with in effect, it is the same thing as the code in UTF-8:

The pragma also modifies the filehandle layers of STDIN and STDOUT to the specified
encoding. Therefore,

Will print "\xF1\xD1\xF1\xCC is the symbol of perl.\n", not "\x{99F1}\x{99DD} is the symbol of perl.\n".

You can override this by giving extra arguments; see below.

By default, if strings operating under byte semantics and strings with Unicode character data are
concatenated, the new string will be created by decoding the byte strings as .

The pragma changes this to use the specified encoding instead. For example:

Will print , because is upgraded as UTF-8. Without , it will print
instead, since is three octets when interpreted as Latin-1.

Some of the features offered by this pragma requires perl 5.8.1. Most of these are done by Inaba
Hiroto. Any other features and changes are good for 5.8.0.

"NON-EUC" doublebyte encodings

Because perl needs to parse script before applying this pragma, such encodings as Shift_JIS
and Big-5 that may contain '\' (BACKSLASH; \x5c) in the second byte fails because the
second byte may accidentally escape the quoting character that follows. Perl 5.8.1 or later
fixes this problem.

tr//

was overlooked by Perl 5 porters when they released perl 5.8.0 See the section below
for details.

DATA pseudo-filehandle

Perl version 5.8.6 documentation - encoding

Page 2http://perldoc.perl.org

Literal Conversions

PerlIO layers for STD(IN|OUT)

Implicit upgrading for byte strings

my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
#<-char-><-char-> # 4 octets

s/\bCamel\b/$Rakuda/;

my $Rakuda = "\x{99F1}\x{99DD}"; # two Unicode Characters
s/\bCamel\b/$Rakuda/;

use encoding "euc-jp";
my $message = "Camel is the symbol of perl.\n";
my $Rakuda = "\xF1\xD1\xF1\xCC"; # Camel in Kanji
$message =~ s/\bCamel\b/$Rakuda/;
print $message;

use encoding ’utf8’;
my $string = chr(20000); # a Unicode string
utf8::encode($string); # now it’s a UTF-8 encoded byte string
concatenate with another Unicode string
print length($string . chr(20000));

use encoding "euc-jp"

2 $string use encoding ’utf8’;
4 $string

tr//

encoding

encoding

ISO 8859-1 (Latin-1)

FEATURES THAT REQUIRE 5.8.1

Another feature that was overlooked was .

use encoding [] ;

Sets the script encoding to . And unless ${^UNICODE} exists and non-zero, PerlIO
layers of STDIN and STDOUT are set to ":encoding()".

Note that STDERR WILL NOT be changed.

Also note that non-STD file handles remain unaffected. Use or to change
layers of those.

If no encoding is specified, the environment variable is consulted. If no
encoding can be found, the error will be thrown.

use encoding [STDIN => ...] ;

You can also individually set encodings of STDIN and STDOUT via the
form. In this case, you cannot omit the first . turns the IO
transcoding completely off.

When ${^UNICODE} exists and non-zero, these options will completely ignored.
${^UNICODE} is a variable introduced in perl 5.8.1. See see
and for details (perl 5.8.1 and later).

use encoding Filter=>1;

This turns the encoding pragma into a source filter. While the default approach just decodes
interpolated literals (in qq() and qr()), this will apply a source filter to the entire source code.
See below for details.

no encoding;

Unsets the script encoding. The layers of STDIN, STDOUT are reset to ":raw" (the default
unprocessed raw stream of bytes).

The magic of is not applied to the names of identifiers. In order to make
($human++, where human is a single Han ideograph) work, you still need to

write your script in UTF-8 -- or use a source filter. That's what 'Filter=>1' does.

What does this mean? Your source code behaves as if it is written in UTF-8 with 'use utf8' in effect.
So even if your editor only supports Shift_JIS, for example, you can still try examples in Chapter 15 of

. For instance, you can use UTF-8 identifiers.

This option is significantly slower and (as of this writing) non-ASCII identifiers are not very stable
WITHOUT this option and with the source code written in UTF-8.

The Filter option now sets STDIN and STDOUT like non-filter options. And
and work like non-filter version.

is implicitly declared so you no longer have to to .

The pragma is a per script, not a per block lexical. Only the last or
matters, and it affects . However, the <no encoding> pragma is supported and

can appear as many times as you want in a given script. The multiple use of this pragma is
discouraged.

By the same reason, the use this pragma inside modules is also discouraged (though not as strongly

Perl version 5.8.6 documentation - encoding

Page 3http://perldoc.perl.org

DATA

use open binmode

Unknown encoding ’ ’

STDIN =>
STDIN => undef

use encoding
${"\x{4eba}"}++

Programming Perl, 3rd Ed.

STDIN=>
STDOUT=>

use utf8 use utf8 ${"\x{4eba}"}++

use encoding no encoding

USAGE

The Filter Option

CAVEATS

ENCNAME

ENCNAME
ENCNAME

PERL_ENCODING

ENCNAME ENCNAME_IN

ENCNAME

perlrun "${^UNICODE}" in perlvar
"-C" in perlrun

ENCNAME

The Filter Option

ENCNAME

ENCNAME

ENCODING ENCODING

Filter-related changes at Encode version 1.87

NOT SCOPED

the whole script use
encoding

discouranged as the case above. See below).

If you still have to write a module with this pragma, be very careful of the load order. See the codes
below;

The best way to avoid this oddity is to use this pragma RIGHT AFTER other modules are loaded. i.e.

Notice that only literals (string or regular expression) having only legacy code points are affected: if
you mix data like this

the data is assumed to be in (Latin 1 and) Unicode, not in your native encoding. In other words, this
will match in "greek":

but this will not

since the (ISO 8859-7 GREEK SMALL LETTER IOTA WITH TONOS) on the left will be
upgraded to (Unicode GREEK SMALL LETTER IOTA WITH TONOS) because of the

on the left. You should not be mixing your legacy data and Unicode in the same string.

This pragma also affects encoding of the 0x80..0xFF code point range: normally characters in that
range are left as eight-bit bytes (unless they are combined with characters with code points 0x100 or
larger, in which case all characters need to become UTF-8 encoded), but if the pragma is
present, even the 0x80..0xFF range always gets UTF-8 encoded.

After all, the best thing about this pragma is that you don't have to resort to \x{....} just to spell your
name in a native encoding. So feel free to put your strings in your encoding in quotes and regexes.

The pragma works by decoding string literals in and so
forth. In perl 5.8.0, this does not apply to . Therefore,

Perl version 5.8.6 documentation - encoding

Page 4http://perldoc.perl.org

called module
package Module_IN_BAR;
use encoding "bar";
stuff in "bar" encoding here
1;

caller script
use encoding "foo"
use Module_IN_BAR;
surprise! use encoding "bar" is in effect.

use Module_IN_BAR;
use encoding "foo";

\xDF\x{100}

"\xDF" =~ /\x{3af}/

"\xDF\x{100}" =~ /\x{3af}\x{100}/

use encoding ’euc-jp’;
#....
$kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/;
-------- -------- -------- --------

DO NOT MIX MULTIPLE ENCODINGS

tr/// with ranges

\xDF
\x{3af}

\x{100}

encoding

q//,qq//,qr//,qw///, qx//
tr///

not

encoding

Does not work as

Legend of characters above

This counterintuitive behavior has been fixed in perl 5.8.1.

In perl 5.8.0, you can work around as follows;

Note the expression is surrounded by . The idea behind is the same as classic idiom that
makes 'interpolate'.

Nevertheless, in case of pragma even is affected so not being decoded was
obviously against the will of Perl5 Porters so it has been fixed in Perl 5.8.1 or later.

Perl version 5.8.6 documentation - encoding

Page 5http://perldoc.perl.org

$kana =~ tr/\x{3041}-\x{3093}/\x{30a1}-\x{30f3}/;

utf8 euc-jp charnames::viacode()

\x{3041} \xA4\xA1 HIRAGANA LETTER SMALL A
\x{3093} \xA4\xF3 HIRAGANA LETTER N
\x{30a1} \xA5\xA1 KATAKANA LETTER SMALL A
\x{30f3} \xA5\xF3 KATAKANA LETTER N

use encoding ’euc-jp’;
....
eval qq{ \$kana =~ tr/\xA4\xA1-\xA4\xF3/\xA5\xA1-\xA5\xF3/ };

tr/$from/$to/; # wrong!
eval qq{ tr/$from/$to/ }; # workaround.

use encoding "iso 8859-7";

\xDF in ISO 8859-7 (Greek) is \x{3af} in Unicode.

$a = "\xDF";
$b = "\x{100}";

printf "%#x\n", ord($a); # will print 0x3af, not 0xdf

$c = $a . $b;

$c will be "\x{3af}\x{100}", not "\x{df}\x{100}".

chr() is affected, and ...

print "mega\n" if ord(chr(0xdf)) == 0x3af;

... ord() is affected by the encoding pragma ...

print "tera\n" if ord(pack("C", 0xdf)) == 0x3af;

workaround to tr///;

tr// qq{}
tr///

q// tr///encoding

EXAMPLE - Greekperl

literals in regex that are longer than 127 bytes

For native multibyte encodings (either fixed or variable length), the current implementation of
the regular expressions may introduce recoding errors for regular expression literals longer
than 127 bytes.

EBCDIC

The encoding pragma is not supported on EBCDIC platforms. (Porters who are willing and
able to remove this limitation are welcome.)

format

This pragma doesn't work well with format because PerlIO does not get along very well with it.
When format contains non-ascii characters it prints funny or gets "wide character warnings".
To understand it, try the code below.

Without binmode this happens to work but without binmode, print() fails instead of write().

At any rate, the very use of format is questionable when it comes to unicode characters since
you have to consider such things as character width (i.e. double-width for ideographs) and
directions (i.e. BIDI for Arabic and Hebrew).

The logic of is as follows:

1. If the platform supports the langinfo(CODESET) interface, the codeset returned is used as the
default encoding for the open pragma.

2. If 1. didn't work but we are under the locale pragma, the environment variables LC_ALL and
LANG (in that order) are matched for encodings (the part after , if any), and if any found, that
is used as the default encoding for the open pragma.

3. If 1. and 2. didn't work, the environment variables LC_ALL and LANG (in that order) are
matched for anything looking like UTF-8, and if any found, is used as the default
encoding for the open pragma.

Perl version 5.8.6 documentation - encoding

Page 6http://perldoc.perl.org

... as are eq and cmp ...

print "peta\n" if "\x{3af}" eq pack("C", 0xdf);
print "exa\n" if "\x{3af}" cmp pack("C", 0xdf) == 0;

... but pack/unpack C are not affected, in case you still
want to go back to your native encoding

print "zetta\n" if unpack("C", (pack("C", 0xdf))) == 0xdf;

Save this one in utf8
replace *non-ascii* with a non-ascii string
my $camel;
format STDOUT =
non-ascii@>>>>>>>
$camel
.
$camel = "*non-ascii*";
binmode(STDOUT=>’:encoding(utf8)’); # bang!
write; # funny
print $camel, "\n"; # fine

KNOWN PROBLEMS

The Logic of :locale
:locale

.

:utf8

If your locale environment variables (LC_ALL, LC_CTYPE, LANG) contain the strings 'UTF-8' or
'UTF8' (case-insensitive matching), the default encoding of your STDIN, STDOUT, and STDERR, and
of , is UTF-8.

This pragma first appeared in Perl 5.8.0. For features that require 5.8.1 and better, see above.

The subpragma was implemented in 2.01, or Perl 5.8.6.

, , , ,

Ch. 15 of by Larry Wall, Tom Christiansen, Jon Orwant;
O'Reilly & Associates; ISBN 0-596-00027-8

Perl version 5.8.6 documentation - encoding

Page 7http://perldoc.perl.org

any subsequent file open

HISTORY

SEE ALSO

:locale

Programming Perl (3rd Edition)

perlunicode Encode open Filter::Util::Call

