
Encode::Encoding - Encode Implementation Base Class

As mentioned in , encodings are (in the current implementation at least) defined as objects.
The mapping of encoding name to object is via the hash. Though you can
directly manipulate this hash, it is strongly encouraged to use this base class module and add
encode() and decode() methods.

You are strongly encouraged to implement methods below, at least either encode() or decode().

->encode($string [,$check])

MUST return the octet sequence representing .

If is true, it SHOULD modify in place to remove the converted part (i.e. the
whole string unless there is an error). If perlio_ok() is true, SHOULD becomes MUST.

If an error occurs, it SHOULD return the octet sequence for the fragment of string that has
been converted and modify $string in-place to remove the converted part leaving it starting
with the problem fragment. If perlio_ok() is true, SHOULD becomes MUST.

If is is false then MUST make a "best effort" to convert the string - for
example, by using a replacement character.

->decode($octets [,$check])

MUST return the string that represents.

If is true, it SHOULD modify in place to remove the converted part (i.e. the
whole sequence unless there is an error). If perlio_ok() is true, SHOULD becomes MUST.

If an error occurs, it SHOULD return the fragment of string that has been converted and
modify $octets in-place to remove the converted part leaving it starting with the problem
fragment. If perlio_ok() is true, SHOULD becomes MUST.

If is false then should make a "best effort" to convert the string - for
example by using Unicode's "\x{FFFD}" as a replacement character.

If you want your encoding to work with pragma, you should also implement the method
below.

->cat_decode($destination, $octets, $offset, $terminator [,$check])

MUST decode with and concatenate it to . Decoding will terminate
when $terminator (a string) appears in output. will be modified to the last $octets
position at end of decode. Returns true if $terminator appears output, else returns false.

You do not have to override methods shown below unless you have to.

->name

Perl version 5.8.6 documentation - Encode::Encoding

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

package Encode::MyEncoding;
use base qw(Encode::Encoding);

__PACKAGE__->Define(qw(myCanonical myAlias));

Encode

$string

$check $string

$check

$octets

$check $octets

$check

encoding

$octets $offset $destination
$offset

%Encode::Encoding

encode

decode

Methods you should implement

Other methods defined in Encode::Encodings



Predefined As:

MUST return the string representing the canonical name of the encoding.

->renew

Predefined As:

This method reconstructs the encoding object if necessary. If you need to store the state
during encoding, this is where you clone your object.

PerlIO ALWAYS calls this method to make sure it has its own private encoding object.

->renewed

Predefined As:

Tells whether the object is renewed (and how many times). Some modules emit
warning unless the value is numeric so

return 0 for false.

->perlio_ok()

Predefined As:

If your encoding does not support PerlIO for some reasons, just;

->needs_lines()

Predefined As:

If your encoding can work with PerlIO but needs line buffering, you MUST define this method
so it returns true. 7bit ISO-2022 encodings are one example that needs this. When this
method is missing, false is assumed.

Perl version 5.8.6 documentation - Encode::Encoding

Page 2http://perldoc.perl.org

sub name { return shift->{’Name’} }

sub renew {
my $self = shift;
my $clone = bless { %$self } => ref($self);
$clone->{renewed}++;
return $clone;

}

sub renewed { $_[0]->{renewed} || 0 }

sub perlio_ok {
eval{ require PerlIO::encoding };
return $@ ? 0 : 1;

}

sub perlio_ok { 0 }

sub needs_lines { 0 };

package Encode::ROT13;
use strict;
use base qw(Encode::Encoding);

__PACKAGE__->Define(’rot13’);

sub encode($$;$){

Use of
uninitialized value in null operation

Example: Encode::ROT13



It should be noted that the behaviour is different from the outer public API. The logic is that the
"unchecked" case is useful when the encoding is part of a stream which may be reporting errors (e.g.
STDERR). In such cases, it is desirable to get everything through somehow without causing
additional errors which obscure the original one. Also, the encoding is best placed to know what the
correct replacement character is, so if that is the desired behaviour then letting low level code do it is
the most efficient.

By contrast, if is true, the scheme above allows the encoding to do as much as it can and tell
the layer above how much that was. What is lacking at present is a mechanism to report what went
wrong. The most likely interface will be an additional method call to the object, or perhaps (to avoid
forcing per-stream objects on otherwise stateless encodings) an additional parameter.

It is also highly desirable that encoding classes inherit from as a base class.
This allows that class to define additional behaviour for all encoding objects.

to create an object with , and call define_encoding. They inherit
their method from .

For the sake of speed and efficiency, most of the encodings are now supported via a :
XS modules generated from UCM files. Encode provides the enc2xs tool to achieve that. Please see

for more details.

,

Scheme 1

The fixup routine gets passed the remaining fragment of string being processed. It modifies it
in place to remove bytes/characters it can understand and returns a string used to represent
them. For example:

This scheme is close to how the underlying C code for Encode works, but gives the fixup
routine very little context.

Perl version 5.8.6 documentation - Encode::Encoding

Page 3http://perldoc.perl.org

my ($obj, $str, $chk) = @_;
$str =~ tr/A-Za-z/N-ZA-Mn-za-m/;
$_[1] = ’’ if $chk; # this is what in-place edit means
return $str;

}

# Jr pna or ynml yvxr guvf;
*decode = \&encode;

1;

package Encode::MyEncoding;
use base qw(Encode::Encoding);

__PACKAGE__->Define(qw(myCanonical myAlias));

sub fixup {
my $ch = substr($_[0],0,1,’’);
return sprintf("\x{%02X}",ord($ch);

}

Why the heck Encode API is different?

SEE ALSO

$check

$check

compiled form

enc2xs

perlmod enc2xs

Encode::Encoding

bless {Name => ...}, $class
name Encode::Encoding

Compiled Encodings



Scheme 2

The fixup routine gets passed the original string, an index into it of the problem area, and the
output string so far. It appends what it wants to the output string and returns a new index into
the original string. For example:

This scheme gives maximal control to the fixup routine but is more complicated to code, and
may require that the internals of Encode be tweaked to keep the original string intact.

Other Schemes

Hybrids of the above.

Multiple return values rather than in-place modifications.

Index into the string could be allowing .

Perl version 5.8.6 documentation - Encode::Encoding

Page 4http://perldoc.perl.org

sub fixup {
# my ($s,$i,$d) = @_;
my $ch = substr($_[0],$_[1],1);
$_[2] .= sprintf("\x{%02X}",ord($ch);
return $_[1]+1;

}

pos($str) s/\G...//


