
Digest - Modules that calculate message digests

The modules calculate digests, also called "fingerprints" or "hashes", of some data, called
a message. The digest is (usually) some small/fixed size string. The actual size of the digest depend
of the algorithm used. The message is simply a sequence of arbitrary bytes or bits.

An important property of the digest algorithms is that the digest is to change if the message
change in some way. Another property is that digest functions are one-way functions, i.e. it should be

to find a message that correspond to some given digest. Algorithms differ in how "likely" and how
"hard", as well as how efficient they are to compute.

All modules provide the same programming interface. A functional interface for simple
use, as well as an object oriented interface that can handle messages of arbitrary length and which
can read files directly.

The digest can be delivered in three formats:

This is the most compact form, but it is not well suited for printing or embedding in
places that can't handle arbitrary data.

A twice as long string of lowercase hexadecimal digits.

A string of portable printable characters. This is the base64 encoded representation of
the digest with any trailing padding removed. The string will be about 30% longer than
the binary version. tells you more about this encoding.

The functional interface is simply importable functions with the same name as the algorithm. The
functions take the message as argument and return the digest. Example:

There are also versions of the functions with "_hex" or "_base64" appended to the name, which
returns the digest in the indicated form.

The following methods are available for all modules:

$ctx = Digest->XXX($arg,...)

$ctx = Digest->new(XXX => $arg,...)

$ctx = Digest::XXX->new($arg,...)

Perl version 5.8.6 documentation - Digest

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

OO INTERFACE

$md5 = Digest->new("MD5");
$sha1 = Digest->new("SHA-1");
$sha256 = Digest->new("SHA-256");
$sha384 = Digest->new("SHA-384");
$sha512 = Digest->new("SHA-512");

$hmac = Digest->HMAC_MD5($key);

use Digest::MD5 qw(md5);
$digest = md5($message);

Digest::

Digest::

Digest::

likely

hard

binary

hex

base64

MIME::Base64

The constructor returns some object that encapsulate the state of the message-digest
algorithm. You can add data to the object and finally ask for the digest. The "XXX" should of
course be replaced by the proper name of the digest algorithm you want to use.

The two first forms are simply syntactic sugar which automatically load the right module on
first use. The second form allow you to use algorithm names which contains letters which are
not legal perl identifiers, e.g. "SHA-1". If no implementation for the given algorithm can be
found, then an exception is raised.

If new() is called as an instance method (i.e. $ctx->new) it will just reset the state the object to
the state of a newly created object. No new object is created in this case, and the return value
is the reference to the object (i.e. $ctx).

$other_ctx = $ctx->clone

The clone method creates a copy of the digest state object and returns a reference to the
copy.

$ctx->reset

This is just an alias for $ctx->new.

$ctx->add($data, ...)

The $data provided as argument are appended to the message we calculate the digest for.
The return value is the $ctx object itself.

$ctx->addfile($io_handle)

The $io_handle is read until EOF and the content is appended to the message we calculate
the digest for. The return value is the $ctx object itself.

$ctx->add_bits($data, $nbits)

$ctx->add_bits($bitstring)

The bits provided are appended to the message we calculate the digest for. The return value
is the $ctx object itself.

The two argument form of add_bits() will add the first $nbits bits from data. For the last
potentially partial byte only the high order bits are used. If $nbits is greater than

, then this method would do the same as , i.e.
$nbits is silently ignored.

The one argument form of add_bits() takes a $bitstring of "1" and "0" chars as argument. It's a
shorthand for .

This example shows two calls that should have the same effect:

Most digest algorithms are byte based. For those it is not possible to add bits that are not a
multiple of 8, and the add_bits() method will croak if you try.

$ctx->digest

Return the binary digest for the message.

Note that the operation is effectively a destructive, read-once operation. Once it has
been performed, the $ctx object is automatically and can be used to calculate another
digest value. Call $ctx->clone->digest if you want to calculate the digest without reseting the
digest state.

$ctx->hexdigest

Same as $ctx->digest, but will return the digest in hexadecimal form.

$ctx->b64digest

Perl version 5.8.6 documentation - Digest

Page 2http://perldoc.perl.org

$nbits % 8
length($data) * 8 $ctx->add($data)

$ctx->add_bits(pack("B*", $bitstring), length($bitstring))

digest
reset

$ctx->add_bits("111100001010");
$ctx->add_bits("\xF0\xA0", 12);

Same as $ctx->digest, but will return the digest as a base64 encoded string.

This table should give some indication on the relative speed of different algorithms. It is sorted by
throughput based on a benchmark done with of some implementations of this API:

These numbers was achieved Apr 2004 with ActivePerl-5.8.3 running under Linux on a P4 2.8 GHz
CPU. The last 5 entries differ by being pure perl implementations of the algorithms, which explains
why they are so slow.

, , , , , ,
, , , ,

New digest implementations should consider subclassing from .

Gisle Aas <gisle@aas.no>

The interface is based on the interface originally developed by Neil Winton for his
module.

This library is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

Perl version 5.8.6 documentation - Digest

Page 3http://perldoc.perl.org

Digest speed

SEE ALSO

AUTHOR

Algorithm Size Implementation MB/s

MD4 128 Digest::MD4 v1.3 165.0
MD5 128 Digest::MD5 v2.33 98.8
SHA-256 256 Digest::SHA2 v1.1.0 66.7
SHA-1 160 Digest::SHA v4.3.1 58.9
SHA-1 160 Digest::SHA1 v2.10 48.8
SHA-256 256 Digest::SHA v4.3.1 41.3
Haval-256 256 Digest::Haval256 v1.0.4 39.8
SHA-384 384 Digest::SHA2 v1.1.0 19.6
SHA-512 512 Digest::SHA2 v1.1.0 19.3
SHA-384 384 Digest::SHA v4.3.1 19.2
SHA-512 512 Digest::SHA v4.3.1 19.2
Whirlpool 512 Digest::Whirlpool v1.0.2 13.0
MD2 128 Digest::MD2 v2.03 9.5

Adler-32 32 Digest::Adler32 v0.03 1.3
CRC-16 16 Digest::CRC v0.05 1.1
CRC-32 32 Digest::CRC v0.05 1.1
MD5 128 Digest::Perl::MD5 v1.5 1.0
CRC-CCITT 16 Digest::CRC v0.05 0.8

Copyright 1998-2001,2003-2004 Gisle Aas.
Copyright 1995-1996 Neil Winton.

Digest::Adler32 Digest::CRC Digest::Haval256 Digest::HMAC Digest::MD2 Digest::MD4
Digest::MD5 Digest::SHA Digest::SHA1 Digest::SHA2 Digest::Whirlpool

Digest::base

MIME::Base64

Digest:: MD5

