
Devel::Peek - A data debugging tool for the XS programmer

Devel::Peek contains functions which allows raw Perl datatypes to be manipulated from a Perl script.
This is used by those who do XS programming to check that the data they are sending from C to Perl
looks as they think it should look. The trick, then, is to know what the raw datatype is supposed to
look like when it gets to Perl. This document offers some tips and hints to describe good and bad raw
data.

It is very possible that this document will fall far short of being useful to the casual reader. The reader
is expected to understand the material in the first few sections of .

Devel::Peek supplies a function which can dump a raw Perl datatype, and
function to report on memory usage (if perl is compiled with corresponding

option). The function DeadCode() provides statistics on the data "frozen" into inactive . Devel::Peek
also supplies , , and which can query, increment,
and decrement reference counts on SVs. This document will take a passive, and safe, approach to
data debugging and for that it will describe only the function.

Function allows dumping of multiple values (useful when you need to analyze returns
of functions).

The global variable $Devel::Peek::pv_limit can be set to limit the number of character printed in
various string values. Setting it to 0 means no limit.

If directive has a argument, this switches on debugging of opcode
dispatch. should be a combination of , , and (see flags in). is a shortcut
for .

return one of the globs associated to a subroutine reference $cv.

debug_flags() returns a string representation of (similar to what is allowed for flag). When
called with a numeric argument, sets $^D to the corresponding value. When called with an argument
of the form , set on/off bits of corresponding to letters before/after . (The
returned value is for before the modification.)

runops_debug() returns true if the current is the debugging one. When called with
an argument, switches to debugging or non-debugging dispatcher depending on the argument (active
for newly-entered subs/etc only). (The returned value is for the dispatcher before the modification.)

When perl is compiled with support for memory footprint debugging (default with Perl's malloc()),
Devel::Peek provides an access to this API.

Use mstat() function to emit a memory state statistic to the terminal. For more information on the
format of output of mstat() see .

Perl version 5.8.6 documentation - Devel::Peek

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use Devel::Peek;
Dump($a);
Dump($a, 5);
DumpArray(5, $a, $b, ...);

mstat "Point 5";

use Devel::Peek ’:opd=st’;

perlguts

perlrun

opcode dispatcher

"Using " in perldebguts

Dump()
mstat("marker")

CV
SvREFCNT() SvREFCNT_inc() SvREFCNT_dec()

Dump()

DumpArray()

use Devel::Peek :opd=FLAGS
FLAGS s t P :opd

:opd=st

CvGV($cv)

$^D

"flags-flags" $^D -
$^D

-D

-D

Runtime debugging

Memory footprint debugging

$ENV{PERL_DEBUG_MSTATS}

Three additional functions allow access to this statistic from Perl. First, use
to get the information contained in the output of mstat() into %hash.

The field of this hash are

Two additional fields , contain array references which provide per-bucket count of free and
used chunks. Two other fields , contain array references which provide
the information about the allocated size and usable size of chunks in each bucket. Again, see

for details.

Keep in mind that only the first several "odd-numbered" buckets are used, so the information on size
of the "odd-numbered" buckets which are not used is probably meaningless.

The information in

is the property of a particular build of perl, and does not depend on the current process. If you do not
provide the optional argument to the functions mstats_fillhash(), fill_mstats(), mstats2hash(), then the
information in fields , is not updated.

is a much cheaper call (both speedwise and memory-wise) which collects the
statistic into $buf in machine-readable form. At a later moment you may need to call

to use this information to fill %hash.

All three APIs , , and
are designed to allocate no memory if used on the same $buf and/or %hash.

So, if you want to collect memory info in a cycle, you may call

The following examples don't attempt to show everything as that would be a monumental task, and,
frankly, we don't want this manpage to be an internals document for Perl. The examples do
demonstrate some basics of the raw Perl datatypes, and should suffice to get most determined
people on their way. There are no guidewires or safety nets, nor blazed trails, so be prepared to travel
alone from this point and on and, if at all possible, don't fall into the quicksand (it's bad for business).

Oh, one final bit of advice: take with you. When you return we expect to see it well-thumbed.

Let's begin by looking a simple scalar which is holding a string.

Perl version 5.8.6 documentation - Devel::Peek

Page 2http://perldoc.perl.org

mstats_fillhash(%hash)

free used
mem_size available_size

mem_size available_size

fill_mstats($buf)

mstats2hash($buf, %hash)

fill_mstats($buf) mstats_fillhash(%hash) mstats2hash($buf,
%hash)

minbucket nbuckets sbrk_good sbrk_slack sbrked_remains sbrks start_slack
topbucket topbucket_ev topbucket_odd total total_chain total_sbrk totfree

mem_size available_size minbucket nbuckets

$#buf = 999;
fill_mstats($_) for @buf;
mstats_fillhash(%report, 1); # Static info too

foreach (@buf) {
Do something...
fill_mstats $_; # Collect statistic

}
foreach (@buf) {
mstats2hash($_, %report); # Preserve static info
Do something with %report

}

"Using
" in perldebguts

the second time

perlguts

$ENV{PERL_DEBUG_MSTATS}

EXAMPLES

A simple scalar string

The output:

This says is an SV, a scalar. The scalar is a PVIV, a string. Its reference count is 1. It has the
flag set, meaning its current PV field is valid. Because POK is set we look at the PV item to see what
is in the scalar. The \0 at the end indicate that this PV is properly NUL-terminated. If the FLAGS had
been IOK we would look at the IV item. CUR indicates the number of characters in the PV. LEN
indicates the number of bytes requested for the PV (one more than CUR, in this case, because LEN
includes an extra byte for the end-of-string marker).

If the scalar contains a number the raw SV will be leaner.

The output:

This says is an SV, a scalar. The scalar is an IV, a number. Its reference count is 1. It has the
flag set, meaning it is currently being evaluated as a number. Because IOK is set we look at the IV
item to see what is in the scalar.

If the scalar from the previous example had an extra reference:

The output:

Notice that this example differs from the previous example only in its reference count. Compare this to
the next example, where we dump instead of .

Perl version 5.8.6 documentation - Devel::Peek

Page 3http://perldoc.perl.org

use Devel::Peek;
$a = "hello";
Dump $a;

SV = PVIV(0xbc288)
REFCNT = 1
FLAGS = (POK,pPOK)
IV = 0
PV = 0xb2048 "hello"\0
CUR = 5
LEN = 6

use Devel::Peek;
$a = 42;
Dump $a;

SV = IV(0xbc818)
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 42

use Devel::Peek;
$a = 42;
$b = \$a;
Dump $a;

SV = IV(0xbe860)
REFCNT = 2
FLAGS = (IOK,pIOK)
IV = 42

$a POK

$a IOK

$b $a

A simple scalar number

A simple scalar with an extra reference

This shows what a reference looks like when it references a simple scalar.

The output:

Starting from the top, this says is an SV. The scalar is an RV, a reference. It has the flag set,
meaning it is a reference. Because ROK is set we have an RV item rather than an IV or PV. Notice
that Dump follows the reference and shows us what was referencing. We see the same that we
found in the previous example.

Note that the value of coincides with the numbers we see when we stringify $b. The addresses
inside RV() and IV() are addresses of structure which holds the current state of an . This
address may change during lifetime of an SV.

This shows what a reference to an array looks like.

The output:

Perl version 5.8.6 documentation - Devel::Peek

Page 4http://perldoc.perl.org

A reference to a simple scalar

A reference to an array

use Devel::Peek;
$a = 42;
$b = \$a;
Dump $b;

SV = RV(0xf041c)
REFCNT = 1
FLAGS = (ROK)
RV = 0xbab08

SV = IV(0xbe860)
REFCNT = 2
FLAGS = (IOK,pIOK)
IV = 42

use Devel::Peek;
$a = [42];
Dump $a;

SV = RV(0xf041c)
REFCNT = 1
FLAGS = (ROK)
RV = 0xb2850

SV = PVAV(0xbd448)
REFCNT = 1
FLAGS = ()
IV = 0
NV = 0
ARRAY = 0xb2048
ALLOC = 0xb2048
FILL = 0
MAX = 0
ARYLEN = 0x0
FLAGS = (REAL)

Elt No. 0 0xb5658
SV = IV(0xbe860)
REFCNT = 1
FLAGS = (IOK,pIOK)

$b ROK

$b $a

RV
X*** SV

This says is an SV and that it is an RV. That RV points to another SV which is a PVAV, an array.
The array has one element, element zero, which is another SV. The field above indicates the
last element in the array, similar to .

If pointed to an array of two elements then we would see the following.

The output:

Note that will not report the elements in the array, only several first (depending on how deep
it already went into the report tree).

The following shows the raw form of a reference to a hash.

The output:

Perl version 5.8.6 documentation - Devel::Peek

Page 5http://perldoc.perl.org

IV = 42

use Devel::Peek ’Dump’;
$a = [42,24];
Dump $a;

SV = RV(0xf041c)
REFCNT = 1
FLAGS = (ROK)
RV = 0xb2850

SV = PVAV(0xbd448)
REFCNT = 1
FLAGS = ()
IV = 0
NV = 0
ARRAY = 0xb2048
ALLOC = 0xb2048
FILL = 0
MAX = 0
ARYLEN = 0x0
FLAGS = (REAL)

Elt No. 0 0xb5658
SV = IV(0xbe860)
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 42

Elt No. 1 0xb5680
SV = IV(0xbe818)
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 24

use Devel::Peek;
$a = {hello=>42};
Dump $a;

SV = RV(0x8177858) at 0x816a618
REFCNT = 1
FLAGS = (ROK)
RV = 0x814fc10

$a
FILL

$#$a

$a

Dump all

A reference to a hash

This shows is a reference pointing to an SV. That SV is a PVHV, a hash. Fields RITER and EITER
are used by .

The "quality" of a hash is defined as the total number of comparisons needed to access every
element once, relative to the expected number needed for a random hash. The value can go over
100%.

The total number of comparisons is equal to the sum of the squares of the number of entries in each
bucket. For a random hash of > keys into > buckets, the expected value is:

The function, by default, dumps up to 4 elements from a toplevel array or hash. This number
can be increased by supplying a second argument to the function.

Notice that prints only elements 10 through 13 in the above code. The following code will
print all of the elements.

This is what you really need to know as an XS programmer, of course. When an XSUB returns a
pointer to a C structure that pointer is stored in an SV and a reference to that SV is placed on the
XSUB stack. So the output from an XSUB which uses something like the T_PTROBJ map might look
something like this:

Perl version 5.8.6 documentation - Devel::Peek

Page 6http://perldoc.perl.org

SV = PVHV(0x8167768) at 0x814fc10
REFCNT = 1
FLAGS = (SHAREKEYS)
IV = 1
NV = 0
ARRAY = 0x816c5b8 (0:7, 1:1)
hash quality = 100.0%
KEYS = 1
FILL = 1
MAX = 7
RITER = -1
EITER = 0x0
Elt "hello" HASH = 0xc8fd181b
SV = IV(0x816c030) at 0x814fcf4
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 42

n + n(n-1)/2k

use Devel::Peek;
$a = [10,11,12,13,14];
Dump $a;

use Devel::Peek ’Dump’;
$a = [10,11,12,13,14];
Dump $a, 5;

SV = RV(0xf381c)
REFCNT = 1
FLAGS = (ROK)
RV = 0xb8ad8

SV = PVMG(0xbb3c8)

$a

<n <k

Dump()

Dump()

each

Dumping a large array or hash

A reference to an SV which holds a C pointer

This shows that we have an SV which is an RV. That RV points at another SV. In this case that
second SV is a PVMG, a blessed scalar. Because it is blessed it has the flag set. Note that
an SV which holds a C pointer also has the flag set. The is set to the package name
which this SV was blessed into.

The output from an XSUB which uses something like the T_PTRREF map, which doesn't bless the
object, might look something like this:

Looks like this:

This shows that

the subroutine is not an XSUB (since and are non-zero, and is zero);

that it was compiled in the package ;

under the name ;

inside a 5th eval in the program;

Perl version 5.8.6 documentation - Devel::Peek

Page 7http://perldoc.perl.org

REFCNT = 1
FLAGS = (OBJECT,IOK,pIOK)
IV = 729160
NV = 0
PV = 0
STASH = 0xc1d10 "CookBookB::Opaque"

SV = RV(0xf381c)
REFCNT = 1
FLAGS = (ROK)
RV = 0xb8ad8

SV = PVMG(0xbb3c8)
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 729160
NV = 0
PV = 0

SV = RV(0x798ec)
REFCNT = 1
FLAGS = (TEMP,ROK)
RV = 0x1d453c

SV = PVCV(0x1c768c)
REFCNT = 2
FLAGS = ()
IV = 0
NV = 0
COMP_STASH = 0x31068 "main"
START = 0xb20e0
ROOT = 0xbece0
XSUB = 0x0
XSUBANY = 0
GVGV::GV = 0x1d44e8 "MY" :: "top_targets"
FILE = "(eval 5)"
DEPTH = 0
PADLIST = 0x1c9338

OBJECT
IOK STASH

START ROOT XSUB

main

MY::top_targets

A reference to a subroutine

it is not currently executed (see);

it has no prototype (field is missing).

, , , , and , ,
, by default. Additionally available ,

and .

Readers have been known to skip important parts of , causing much frustration for all.

Ilya Zakharevich ilya@math.ohio-state.edu

Copyright (c) 1995-98 Ilya Zakharevich. All rights reserved. This program is free software; you can
redistribute it and/or modify it under the same terms as Perl itself.

Author of this software makes no claim whatsoever about suitability, reliability, edability, editability or
usability of this product, and should not be kept liable for any damage resulting from the use of it. If
you can use it, you are in luck, if not, I should not be kept responsible. Keep a handy copy of your
backup tape at hand.

, and , again.

Perl version 5.8.6 documentation - Devel::Peek

Page 8http://perldoc.perl.org

DEPTH

PROTOTYPE

Dump mstat DeadCode DumpArray DumpWithOP DumpProg fill_mstats
mstats_fillhash mstats2hash SvREFCNT SvREFCNT_inc

SvREFCNT_dec

EXPORTS

BUGS

AUTHOR

SEE ALSO

perlguts

perlguts perlguts

