
AutoLoader - load subroutines only on demand

The module works with the module and the token to defer the
loading of some subroutines until they are used rather than loading them all at once.

To use , the author of a module has to place the definitions of subroutines to be
autoloaded after an token. (See .) The module can then be run manually
to extract the definitions into individual files .

implements an AUTOLOAD subroutine. When an undefined subroutine in is called in a
client module of , 's AUTOLOAD subroutine attempts to locate the
subroutine in a file with a name related to the location of the file from which the client module was
read. As an example, if is located in , will look
for perl subroutines in , where the file has the same
name as the subroutine, sans package. If such a file exists, AUTOLOAD will read and evaluate it,
thus (presumably) defining the needed subroutine. AUTOLOAD will then the newly defined
subroutine.

Once this process completes for a given function, it is defined, so future calls to the subroutine will
bypass the AUTOLOAD mechanism.

In order for object method lookup and/or prototype checking to operate correctly even when methods
have not yet been defined it is necessary to "forward declare" each subroutine (as in).
See . Such forward declaration creates "subroutine stubs", which are place
holders with no code.

The AutoSplit and modules automate the creation of forward declarations. The AutoSplit
module creates an 'index' file containing forward declarations of all the AutoSplit subroutines. When
the AutoLoader module is 'use'd it loads these declarations into its callers package.

Because of this mechanism it is important that is always d and not d.

In order to use 's AUTOLOAD subroutine you explicitly import it:

Some modules, mainly extensions, provide their own AUTOLOAD subroutines. They typically need to
check for some special cases (such as constants) and then fallback to 's AUTOLOAD for

Perl version 5.8.6 documentation - AutoLoader

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

package Foo;
use AutoLoader ’AUTOLOAD’; # import the default AUTOLOAD subroutine

package Bar;
use AutoLoader; # don’t import AUTOLOAD, define our own
sub AUTOLOAD {

...
$AutoLoader::AUTOLOAD = "...";
goto &AutoLoader::AUTOLOAD;

}

use AutoLoader ’AUTOLOAD’;

AutoLoader AutoSplit

AutoLoader
AutoSplit

AutoLoader
AutoLoader AutoLoader

AutoLoader
POSIX

AutoLoader

AutoLoader

AutoLoader

AutoLoader

__END__

__END__

.al

goto

sub NAME;

use require

perldata
auto/funcname.al

POSIX.pm /usr/local/lib/perl5/POSIX.pm
/usr/local/lib/perl5/auto/POSIX/*.al

"SYNOPSIS" in perlsub

must

Subroutine Stubs

Using AutoLoader's AUTOLOAD Subroutine

Overriding AutoLoader's AUTOLOAD Subroutine

the rest.

Such modules should import 's AUTOLOAD subroutine. Instead, they should define
their own AUTOLOAD subroutines along these lines:

If any module's own AUTOLOAD subroutine has no need to fallback to the AutoLoader's AUTOLOAD
subroutine (because it doesn't have any AutoSplit subroutines), then that module should not use

at all.

Package lexicals declared with in the main block of a package using will not be
visible to auto-loaded subroutines, due to the fact that the given scope ends at the marker.
A module using such variables as package globals will not work properly under the .

The pragma (see) may be used in such situations as an alternative to
explicitly qualifying all globals with the package namespace. Variables pre-declared with this pragma
will be visible to any autoloaded routines (but will not be invisible outside the package, unfortunately).

You can stop using AutoLoader by simply

The is similar in purpose to : both delay the loading of subroutines.

uses the marker rather than . While this avoids the use of a
hierarchy of disk files and the associated open/close for each routine loaded, suffers a
startup speed disadvantage in the one-time parsing of the lines after , after which routines
are cached. can also handle multiple packages in a file.

only reads code as it is requested, and in many cases should be faster, but requires a
mechanism like be used to create the individual files. will invoke

automatically if is used in a module source file.

Perl version 5.8.6 documentation - AutoLoader

Page 2http://perldoc.perl.org

not

"vars" in perlmod

ExtUtils::MakeMaker

AutoLoader

AutoLoader

AutoLoader

AutoLoader

AutoLoader SelfLoader

SelfLoader
SelfLoader

SelfLoader

AutoLoader
AutoSplit

AutoSplit AutoLoader

use AutoLoader;
use Carp;

sub AUTOLOAD {
my $sub = $AUTOLOAD;
(my $constname = $sub) =~ s/.*:://;
my $val = constant($constname, @_ ? $_[0] : 0);
if ($! != 0) {

if ($! =~ /Invalid/ || $!{EINVAL}) {
$AutoLoader::AUTOLOAD = $sub;
goto &AutoLoader::AUTOLOAD;

}
else {

croak "Your vendor has not defined constant $constname";
}

}
*$sub = sub { $val }; # same as: eval "sub $sub { $val }";
goto &$sub;

}

no AutoLoader;

Package Lexicals

Not Using AutoLoader

AutoLoader vs. SelfLoader

my
__END__

vars

__DATA__ __END__

__DATA__

AutoLoaders prior to Perl 5.002 had a slightly different interface. Any old modules which use
should be changed to the new calling style. Typically this just means changing a require

to a use, adding the explicit import if needed, and removing from .

On systems with restrictions on file name length, the file corresponding to a subroutine may have a
shorter name that the routine itself. This can lead to conflicting file names. The package
warns of these potential conflicts when used to split a module.

AutoLoader may fail to find the autosplit files (or even find the wrong ones) in cases where
contains relative paths, the program does .

- an autoloader that doesn't use external files.

Perl version 5.8.6 documentation - AutoLoader

Page 3http://perldoc.perl.org

CAVEATS

SEE ALSO

AutoLoader
AutoLoader

and

’AUTOLOAD’ @ISA

@INC
chdir

AutoSplit

SelfLoader

