
Attribute::Handlers - Simpler definition of attribute handlers

This document describes version 0.78 of Attribute::Handlers, released October 5, 2002.

Perl version 5.8.6 documentation - Attribute::Handlers

Page 1http://perldoc.perl.org

NAME

VERSION

SYNOPSIS
package MyClass;
require v5.6.0;
use Attribute::Handlers;
no warnings ’redefine’;

sub Good : ATTR(SCALAR) {
my ($package, $symbol, $referent, $attr, $data) = @_;

Invoked for any scalar variable with a :Good attribute,
provided the variable was declared in MyClass (or
a derived class) or typed to MyClass.

Do whatever to $referent here (executed in CHECK phase).
...
}

sub Bad : ATTR(SCALAR) {
Invoked for any scalar variable with a :Bad attribute,
provided the variable was declared in MyClass (or
a derived class) or typed to MyClass.
...
}

sub Good : ATTR(ARRAY) {
Invoked for any array variable with a :Good attribute,
provided the variable was declared in MyClass (or
a derived class) or typed to MyClass.
...
}

sub Good : ATTR(HASH) {
Invoked for any hash variable with a :Good attribute,
provided the variable was declared in MyClass (or
a derived class) or typed to MyClass.
...
}

sub Ugly : ATTR(CODE) {
Invoked for any subroutine declared in MyClass (or a
derived class) with an :Ugly attribute.
...
}

sub Omni : ATTR {
Invoked for any scalar, array, hash, or subroutine
with an :Omni attribute, provided the variable or

This module, when inherited by a package, allows that package's class to define attribute handler
subroutines for specific attributes. Variables and subroutines subsequently defined in that package, or
in packages derived from that package may be given attributes with the same names as the attribute
handler subroutines, which will then be called in one of the compilation phases (i.e. in a ,

, , or block).

To create a handler, define it as a subroutine with the same name as the desired attribute, and
declare the subroutine itself with the attribute . For example:

This creates a handler for the attribute in the class LoudDecl. Thereafter, any subroutine
declared with a attribute in the class LoudDecl:

causes the above handler to be invoked, and passed:

[0]

the name of the package into which it was declared;

[1]

a reference to the symbol table entry (typeglob) containing the subroutine;

[2]

a reference to the subroutine;

[3]

the name of the attribute;

Perl version 5.8.6 documentation - Attribute::Handlers

Page 2http://perldoc.perl.org

subroutine was declared in MyClass (or a derived class)
or the variable was typed to MyClass.
Use ref($_[2]) to determine what kind of referent it was.
...
}

use Attribute::Handlers autotie => { Cycle => Tie::Cycle };

my $next : Cycle([’A’..’Z’]);

package LoudDecl;
use Attribute::Handlers;

sub Loud :ATTR {
my ($package, $symbol, $referent, $attr, $data, $phase) = @_;
print STDERR
ref($referent), " ",
*{$symbol}{NAME}, " ",
"($referent) ", "was just declared ",
"and ascribed the ${attr} attribute ",
"with data ($data)\n",
"in phase $phase\n";

}

package LoudDecl;

sub foo: Loud {...}

DESCRIPTION

BEGIN
CHECK INIT END

:ATTR

:Loud
:Loud

[4]

any data associated with that attribute;

[5]

the name of the phase in which the handler is being invoked.

Likewise, declaring any variables with the attribute within the package:

will cause the handler to be called with a similar argument list (except, of course, that will be a
reference to the variable).

The package name argument will typically be the name of the class into which the subroutine was
declared, but it may also be the name of a derived class (since handlers are inherited).

If a lexical variable is given an attribute, there is no symbol table to which it belongs, so the symbol
table argument () is set to the string in that case. Likewise, ascribing an attribute
to an anonymous subroutine results in a symbol table argument of .

The data argument passes in the value (if any) associated with the attribute. For example, if had
been declared:

then the string would be passed as the last argument.

Attribute::Handlers makes strenuous efforts to convert the data argument () to a useable form
before passing it to the handler (but see). For example, all of
these:

causes it to pass as the handler's data argument.
However, if the data can't be parsed as valid Perl, then it is passed as an uninterpreted string. For
example:

cause the strings and respectively to
be passed as the data argument.

If the attribute has only a single associated scalar data value, that value is passed as a scalar. If
multiple values are associated, they are passed as an array reference. If no value is associated with
the attribute, is passed.

Perl version 5.8.6 documentation - Attribute::Handlers

Page 3http://perldoc.perl.org

:Loud

$_[2]

$_[1] ’LEXICAL’
’ANON’

&foo

"turn it up to 11, man!"

$_[4]

[’till’,’ears’,’are’,’bleeding’]

’my,ears,are,bleeding’ ’qw/my ears are bleeding’

undef

package LoudDecl;

my $foo :Loud;
my @foo :Loud;
my %foo :Loud;

sub foo :Loud("turn it up to 11, man!") {...}

sub foo :Loud(till=>ears=>are=>bleeding) {...}
sub foo :Loud([’till’,’ears’,’are’,’bleeding’]) {...}
sub foo :Loud(qw/till ears are bleeding/) {...}
sub foo :Loud(qw/my, ears, are, bleeding/) {...}
sub foo :Loud(till,ears,are,bleeding) {...}

sub foo :Loud(my,ears,are,bleeding) {...}
sub foo :Loud(qw/my ears are bleeding) {...}

Non-interpretive attribute handlers

Regardless of the package in which it is declared, if a lexical variable is ascribed an attribute, the
handler that is invoked is the one belonging to the package to which it is typed. For example, the
following declarations:

causes the LoudDecl::Loud handler to be invoked (even if OtherClass also defines a handler for
attributes).

If an attribute handler is declared and the specifier is given the name of a built-in type (
, , , or), the handler is only applied to declarations of that type. For

example, the following definition:

creates an attribute handler that applies only to scalars:

You can, of course, declare separate handlers for these types as well (but you'll need to specify
to do it quietly):

You can also explicitly indicate that a single handler is meant to be used for all types of referents like
so:

(I.e. is a synonym for).

Perl version 5.8.6 documentation - Attribute::Handlers

Page 4http://perldoc.perl.org

Typed lexicals

Type-specific attribute handlers

package OtherClass;

my LoudDecl $loudobj : Loud;
my LoudDecl @loudobjs : Loud;
my LoudDecl %loudobjex : Loud;

package LoudDecl;

sub RealLoud :ATTR(SCALAR) { print "Yeeeeow!" }

package Painful;
use base LoudDecl;

my $metal : RealLoud; # invokes &LoudDecl::RealLoud
my @metal : RealLoud; # error: unknown attribute
my %metal : RealLoud; # error: unknown attribute
sub metal : RealLoud {...} # error: unknown attribute

package LoudDecl;
use Attribute::Handlers;
no warnings ’redefine’;

sub RealLoud :ATTR(SCALAR) { print "Yeeeeow!" }
sub RealLoud :ATTR(ARRAY) { print "Urrrrrrrrrr!" }
sub RealLoud :ATTR(HASH) { print "Arrrrrgggghhhhhh!" }
sub RealLoud :ATTR(CODE) { croak "Real loud sub torpedoed" }

package LoudDecl;
use Attribute::Handlers;

sub SeriousLoud :ATTR(ANY) { warn "Hearing loss imminent" }

:Loud

:ATTR
SCALAR ARRAY HASH CODE

no
warnings ’redefine’

ATTR(ANY) :ATTR

Occasionally the strenuous efforts Attribute::Handlers makes to convert the data argument () to
a useable form before passing it to the handler get in the way.

You can turn off that eagerness-to-help by declaring an attribute handler with the keyword .
For example:

Then the handler makes absolutely no attempt to interpret the data it receives and simply passes it as
a string:

By default, attribute handlers are called at the end of the compilation phase (in a block). This
seems to be optimal in most cases because most things that can be defined are defined by that point
but nothing has been executed.

However, it is possible to set up attribute handlers that are called at other points in the program's
compilation or execution, by explicitly stating the phase (or phases) in which you wish the attribute
handler to be called. For example:

As the last example indicates, a handler may be set up to be (re)called in two or more phases. The
phase name is passed as the handler's final argument.

Note that attribute handlers that are scheduled for the phase are handled as soon as the
attribute is detected (i.e. before any subsequently defined blocks are executed).

Attributes make an excellent and intuitive interface through which to tie variables. For example:

Perl version 5.8.6 documentation - Attribute::Handlers

Page 5http://perldoc.perl.org

Non-interpretive attribute handlers

Phase-specific attribute handlers

Attributes as tie interfaces

$_[4]

RAWDATA

CHECK

BEGIN
BEGIN

sub Raw : ATTR(RAWDATA) {...}
sub Nekkid : ATTR(SCALAR,RAWDATA) {...}
sub Au::Naturale : ATTR(RAWDATA,ANY) {...}

my $power : Raw(1..100); # handlers receives "1..100"

sub Early :ATTR(SCALAR,BEGIN) {...}
sub Normal :ATTR(SCALAR,CHECK) {...}
sub Late :ATTR(SCALAR,INIT) {...}
sub Final :ATTR(SCALAR,END) {...}
sub Bookends :ATTR(SCALAR,BEGIN,END) {...}

use Attribute::Handlers;
use Tie::Cycle;

sub UNIVERSAL::Cycle : ATTR(SCALAR) {
my ($package, $symbol, $referent, $attr, $data, $phase) =

@_;
$data = [$data] unless ref $data eq ’ARRAY’;
tie $$referent, ’Tie::Cycle’, $data;

}

and thereafter...

package main;

my $next : Cycle(’A’..’Z’); # $next is now a tied variable

Note that, because the attribute receives its arguments in the variable, if the attribute is
given a list of arguments, will consist of a single array reference; otherwise, it will consist of the
single argument directly. Since Tie::Cycle requires its cycling values to be passed as an array
reference, this means that we need to wrap non-array-reference arguments in an array constructor:

Typically, however, things are the other way around: the tieable class expects its arguments as a
flattened list, so the attribute looks like:

This software pattern is so widely applicable that Attribute::Handlers provides a way to automate it:
specifying in the statement. So, the cycling example,
could also be written:

Note that we now have to pass the cycling values as an array reference, since the
mechanism passes a list of arguments as a list (as in the Tie::Whatever example), as an
array reference (as in the original Tie::Cycle example at the start of this section).

The argument after is a reference to a hash in which each key is the name of an attribute
to be created, and each value is the class to which variables ascribed that attribute should be tied.

Note that there is no longer any need to import the Tie::Cycle module -- Attribute::Handlers takes care
of that automagically. You can even pass arguments to the module's subroutine, by
appending them to the class name. For example:

If the attribute name is unqualified, the attribute is installed in the current package. Otherwise it is
installed in the qualifier's package:

Perl version 5.8.6 documentation - Attribute::Handlers

Page 6http://perldoc.perl.org

while (<>) {
print $next;

}

$data = [$data] unless ref $data eq ’ARRAY’;

sub UNIVERSAL::Cycle : ATTR(SCALAR) {
my ($package, $symbol, $referent, $attr, $data, $phase) =

@_;
my @data = ref $data eq ’ARRAY’ ? @$data : $data;
tie $$referent, ’Tie::Whatever’, @data;

}

use Attribute::Handlers autotie => { Cycle => ’Tie::Cycle’ };

and thereafter...

package main;

my $next : Cycle([’A’..’Z’]); # $next is now a tied variable

while (<>) {
print $next;

use Attribute::Handlers
autotie => { Dir => ’Tie::Dir qw(DIR_UNLINK)’ };

package Here;

Cycle $data
$data

’autotie’ use Attribute::Handlers

autotie
tie

’autotie’

import

not

Autoties are most commonly used in the module to which they actually tie, and need to export their
attributes to any module that calls them. To facilitiate this, Attribute::Handlers recognizes a special
"pseudo-class" -- , which may be specified as the qualifier of an attribute:

This causes Attribute::Handlers to define the attribute in the package that imports the
Tie::Me::Kangaroo:Down::Sport module.

Note that it is important to quote the __CALLER__::Roo identifier because a bug in perl 5.8 will refuse
to parse it and cause an unknown error.

Occasionally it is important to pass a reference to the object being tied to the TIESCALAR, TIEHASH,
etc. that ties it.

The mechanism supports this too. The following code:

has the same effect as:

But when is used instead of :

the effect is to pass the call an extra reference to the variable being tied:

If the class shown in were placed in the MyClass.pm module, then the following code:

Perl version 5.8.6 documentation - Attribute::Handlers

Page 7http://perldoc.perl.org

use Attribute::Handlers autotie => {
Other::Good => Tie::SecureHash, # tie attr installed in

Other::
Bad => Tie::Taxes, # tie attr installed in

Here::
UNIVERSAL::Ugly => Software::Patent # tie attr installed

everywhere
};

package Tie::Me::Kangaroo:Down::Sport;

use Attribute::Handlers autotie => { ’__CALLER__::Roo’ =>
__PACKAGE__ };

use Attribute::Handlers autotieref => { Selfish => Tie::Selfish };
my $var : Selfish(@args);

tie my $var, ’Tie::Selfish’, @args;

use Attribute::Handlers autotieref => { Selfish => Tie::Selfish };
my $var : Selfish(@args);

tie my $var, ’Tie::Selfish’, \$var, @args;

package main;
use MyClass;

my MyClass $slr :Good :Bad(1**1-1) :Omni(-vorous);

package SomeOtherClass;

__CALLER__

Roo

autotie

"autotieref" "autotie"

tie

Passing the tied object to tie

EXAMPLES
SYNOPSIS

would cause the following handlers to be invoked:

Perl version 5.8.6 documentation - Attribute::Handlers

Page 8http://perldoc.perl.org

use base MyClass;

sub tent { ’acle’ }

sub fn :Ugly(sister) :Omni(’po’,tent()) {...}
my @arr :Good :Omni(s/cie/nt/);
my %hsh :Good(q/bye) :Omni(q/bus/);

my MyClass $slr :Good :Bad(1**1-1) :Omni(-vorous);

MyClass::Good:ATTR(SCALAR)(’MyClass’, # class
’LEXICAL’, # no typeglob
\$slr, # referent
’Good’, # attr name
undef # no attr data
’CHECK’, # compiler phase

);

MyClass::Bad:ATTR(SCALAR)(’MyClass’, # class
’LEXICAL’, # no typeglob
\$slr, # referent
’Bad’, # attr name
0 # eval’d attr data
’CHECK’, # compiler phase

);

MyClass::Omni:ATTR(SCALAR)(’MyClass’, # class
’LEXICAL’, # no typeglob
\$slr, # referent
’Omni’, # attr name
’-vorous’ # eval’d attr data
’CHECK’, # compiler phase

);

sub fn :Ugly(sister) :Omni(’po’,tent()) {...}

MyClass::UGLY:ATTR(CODE)(’SomeOtherClass’, # class
*SomeOtherClass::fn, # typeglob
\&SomeOtherClass::fn, # referent
’Ugly’, # attr name
’sister’ # eval’d attr data
’CHECK’, # compiler phase

);

MyClass::Omni:ATTR(CODE)(’SomeOtherClass’, # class
*SomeOtherClass::fn, # typeglob
\&SomeOtherClass::fn, # referent
’Omni’, # attr name
[’po’,’acle’] # eval’d attr data
’CHECK’, # compiler phase

);

Installing handlers into UNIVERSAL, makes them...err..universal. For example:

Perl version 5.8.6 documentation - Attribute::Handlers

Page 9http://perldoc.perl.org

my @arr :Good :Omni(s/cie/nt/);

MyClass::Good:ATTR(ARRAY)(’SomeOtherClass’, # class
’LEXICAL’, # no typeglob
\@arr, # referent
’Good’, # attr name
undef # no attr data
’CHECK’, # compiler phase

);

MyClass::Omni:ATTR(ARRAY)(’SomeOtherClass’, # class
’LEXICAL’, # no typeglob
\@arr, # referent
’Omni’, # attr name
"" # eval’d attr data
’CHECK’, # compiler phase

);

my %hsh :Good(q/bye) :Omni(q/bus/);

MyClass::Good:ATTR(HASH)(’SomeOtherClass’, # class
’LEXICAL’, # no typeglob
\%hsh, # referent
’Good’, # attr name
’q/bye’ # raw attr data
’CHECK’, # compiler phase

);

MyClass::Omni:ATTR(HASH)(’SomeOtherClass’, # class
’LEXICAL’, # no typeglob
\%hsh, # referent
’Omni’, # attr name
’bus’ # eval’d attr data
’CHECK’, # compiler phase

);

package Descriptions;
use Attribute::Handlers;

my %name;
sub name { return $name{$_[2]}||*{$_[1]}{NAME} }

sub UNIVERSAL::Name :ATTR {
$name{$_[2]} = $_[4];

}

sub UNIVERSAL::Purpose :ATTR {
print STDERR "Purpose of ", &name, " is $_[4]\n";

}

sub UNIVERSAL::Unit :ATTR {

Let's you write:

An attribute handler was specified with an , but the type of referent it was
defined to handle wasn't one of the five permitted: , , , , or .

A handler for attributes of the specified name defined, but not for the specified type of
declaration. Typically encountered whe trying to apply a attribute handler to a subroutine,
or a attribute handler to some other type of variable.

A handler for an attributes with an all-lowercase name was declared. An attribute with an
all-lowercase name might have a meaning to Perl itself some day, even though most don't yet.
Use a mixed-case attribute name, instead.

You just can't, okay? Instead, put all the specifications together with commas between them in
a single .

You can only declare autoties for types , , and . They're the only
things (apart from typeglobs -- which are not declarable) that Perl can tie.

Something is rotten in the state of the program. An attributed subroutine ceased to exist
between the point it was declared and the point at which its attribute handler(s) would have
been called.

You have defined an END handler for an attribute that is being applied to a lexical variable.
Since the variable may not be available during END this won't happen.

Damian Conway (damian@conway.org)

Perl version 5.8.6 documentation - Attribute::Handlers

Page 10http://perldoc.perl.org

print STDERR &name, " measured in $_[4]\n";
}

use Descriptions;

my $capacity : Name(capacity)
: Purpose(to store max storage capacity for files)
: Unit(Gb);

package Other;

sub foo : Purpose(to foo all data before barring it) { }

etc.

DIAGNOSTICS

AUTHOR

Bad attribute type: ATTR(%s)

:ATTR()
SCALAR ARRAY HASH CODE ANY

Attribute handler %s doesn’t handle %s attributes

VAR
SCALAR

Declaration of %s attribute in package %s may clash with future reserved
word

Can’t have two ATTR specifiers on one subroutine

ATTR()

Can’t autotie a %s

"SCALAR" "ARRAY" "HASH"

Internal error: %s symbol went missing

Won’t be able to apply END handler

ref_type

specification

was

There are undoubtedly serious bugs lurking somewhere in code this funky :-) Bug reports and other
feedback are most welcome.

Perl version 5.8.6 documentation - Attribute::Handlers

Page 11http://perldoc.perl.org

BUGS

COPYRIGHT
Copyright (c) 2001, Damian Conway. All Rights Reserved.

This module is free software. It may be used, redistributed
and/or modified under the same terms as Perl itself.

