
Mod python Manual
Release 2.7.8

Gregory Trubetskoy

April 19, 2002

E-mail: grisha@modpython.org



Copyright c© 2000 Gregory Trubetskoy All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledg-
ment: ”This product includes software developed by Gregory Trubetskoy.” Alternately, this acknowledgment
may appear in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names ”modpython”, ”modpython” or ”Gregory Trubetskoy” must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact
grisha@modpython.org.

5. Products derived from this software may not be called ”modpython” or ”modpython”, nor may ”modpython”
or ”modpython” appear in their names without prior written permission of Gregory Trubetskoy.

THIS SOFTWARE IS PROVIDED BY GREGORY TRUBETSKOY “AS IS” AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GREGORY
TRUBETSKOY OR HIS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCURE-
MENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of an extension to the Apache http server. More information about Apache may be found at

http://www.apache.org/

More information on Python language can be found at

http://www.python.org/



Abstract

Mod python allows embedding Python within the Apache server for a considerable boost in performance and added
flexibility in designing web based applications.

This document aims to be the only necessary and authoritative source of information about modpython, usable as a
comprehensive refence, a user guide and a tutorial all-in-one.

See Also:

Python Language Web Site
(http://www.python.org/)

for information on the Python language

Apache Server Web Site
(http://httpd.apache.org/)

for information on the Apache server





CONTENTS

1 Introduction 1
1.1 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Installation 3
2.1 Prerequisites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Tutorial 9
3.1 Quick Overview of how Apache Handles Requests. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 So what Exactly does Mod-python do?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Now something More Complicated - Authentication. . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Publisher Handler Makes it Easy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Python API 15
4.1 Multiple Interpreters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Overview of a Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 apache – Access to Apache Internals.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 util – Miscellaneous Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Apache Configuration Directives 27
5.1 Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Other Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Standard Handlers 35
6.1 Publisher Handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 CGI Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Httpdapy handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4 ZHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Windows Installation 41

B VMS installation 43

Index 47

i



ii



CHAPTER

ONE

Introduction

1.1 Performance

Some very quick tests showed a very apparent performance increase:

Platform: 300Mhz Pentium MMX (Sony Vaio PCG-505TR), FreeBSD
Program: A script that first imported the standard library

cgi module, then output a single word "Hello!".
Measuring tool: ab (included with apache), 1000 requests.

Standard CGI: 5 requests/s
Cgihandler: 40 requests/s
As a handler: 140 requests/s

1.2 Flexibility

Apache processes requests in phases (e.g. read the request, parse headers, check access, etc.). These phases can be
implemented by functions called handlers. Traditionally, handlers are written in C and compiled into Apache modules.
Mod python provides a way to extend Apache functionality by writing Apache handlers in Python. For a detailed
description of the Apache request processing process, see theApache API Notes.

For most programmers, the request and the authentication handlers provide everything required.

To ease migration from CGI and Httpdapy, two handlers are provided that simulate these environments allowing a user
to run his scripts under modpython with (for the most part) no changes to the code.

See Also:

http://dev.apache.org/
Apache Developer Resources

1.3 History

Mod python originates from a project called Httpdapy. For a long time Httpdapy was not called modpython because
Httpdapy was not meant to be Apache-specific. Httpdapy was designed to be cross-platform and in fact was initially
written for the Netscape server.

This excerpt from the Httpdapy README file describes well the challenges and the solution provided by embedding
Python within the HTTP server:

1



While developing my first WWW applications a few years back, I found
that using CGI for programs that need to connect to relational
databases (commercial or not) is too slow because every hit requires
loading of the interpreter executable which can be megabytes in size,
any database libraries that can themselves be pretty big, plus, the
database connection/authentication process carries a very significant
overhead because it involves things like DNS resolutions, encryption,
memory allocation, etc.. Under pressure to speed up the application, I
nearly gave up the idea of using Python for the project and started
researching other tools that claimed to specialize in www database
integration. I did not have any faith in MS’s ASP; was quite
frustrated by Netscape LiveWire’s slow performance and bugginess; Cold
Fusion seemed promising, but I soon learned that writing in html-like
tags makes programs as readable as assembly. Same is true for
PHP. Besides, I *really* wanted to write things in Python.

Around the same time the Internet Programming With Python book came
out and the chapter describing how to embed Python within Netscape
server immediately caught my attention. I used the example in my
project, and developed an improved version of what I later called
Nsapy that compiled on both Windows NT and Solaris.

Although Nsapy only worked with Netscape servers, it was a very
intelligent generic OO design that, in the spirit of Python, that lent
itself for easy portability to other web servers.

Incidently, the popularity of Netscape’s servers was taking a turn
south, and so I set out to port Nsapy to other servers starting with
the most popular one, Apache. And so from Nsapy was born Httpdapy.

...continuing this saga, I later learned that writing Httpdapy for every server is a task a little bigger and less interesting
than I originally imagined.

Instead, it seemed like providing a Python counterpart to the popular Perl Apache extension modperl that would give
Python users the same (or better) capability would be a much more exciting thing to do.

And so it was done.

2 Chapter 1. Introduction



CHAPTER

TWO

Installation

NOTE: By far the best place to get help with installation and other issues is the modpython mailing list. Please
take a moment to join the modpython mailing list by sending an e-mail with the word ”subscribe” in the subject to
mod python-request@modpython.org.

2.1 Prerequisites

• Python 1.5.2, 1.6, 2.0 or 2.1

• Apache 1.3 (1.3.20 or higher recommended, 2.0 is not yet supported)

You will need to have the include files for both Apache and Python, as well as the Python library installed on your
system. If you installed Python and Apache from source, then you already have everything that’s needed. However,
if you are using prepackaged software (e.g. Linux Red Hat RPM, Debian, or Solaris packages from sunsite, etc) then
chances are, you just have the binaries and not the sources on your system. Often, the include files and the libraries are
part of separate ”development” package. If you are not sure whether you have all the necessary files, either compile and
install Python and Apache from source, or refer to the documentation for your system on how to get the development
packages.

2.2 Compiling

There are two ways that this module can be compiled and linked to Apache - statically, or as a DSO (Dynamic Shared
Object).

Staticlinking is a more ”traditional” approach, and most programmers prefer it for its simplicity. The drawback is that
it entails recompiling Apache, which some people cannot do for a variety of reasons.

DSO is a newer and still somewhat experimental approach. The module gets compiled as a library that is dynami-
cally loaded by the server at run time. A more detailed description of the Apache DSO mechanism is available at
http://www.apache.org/docs/dso.html.

The advantage of DSO is that a module can be installed without recompiling Apache and used as needed. DSO has
its disadvantages, however. Compiling a module like modpython into a DSO can be a complicated process because
Python, depending on configuration, may rely on a number of other libraries, and you need to make sure that the
DSO is statically linked against each of them. Luckily, the configure script below will spare you of this headache by
automatically figuring out all the necessary parameters.

3



2.2.1 Running ./configure

The ./configure script will analyze your environment and create custom Makefiles particular to your system. Aside
from all the standard autoconf stuff,./configuredoes the following:

• Finds out whether a program calledapxs is available. This program is part of the standard Apache distribution,
and is necessary for DSO compilation. If apxs cannot be found in your PATH or in/usr/local/apache/bin, DSO
compilation will not be available.

You can manually specify the location of apxs by using the--with-apxs option, e.g.:

$ ./configure --with-apxs=/usr/local/apache/bin/apxs

• Checks for--with-apache option. Use this option to tell./configure where the Apache sources are on your
system. The Apache sources are necessary for static compilation. If you do not specify this option, static
compilation will not be available. Here is an example:

$ ./configure --with-apache=../src/apache_1.3.12 --with-apxs=/usr/local/apache/bin/apxs

• Checks your Python version and attempts to figure out wherelibpython is by looking at various parameters
compiled into your Python binary. By default, it will use thepython program found in your PATH.

If the Python installation on your system is not suitable for modpython (which can be the case if Python is
compiled with thread support), you can specify an alternative location with the--with-python options. This
option needs to point to the root directory of the Python source, e.g.:

$ ./configure --with-python=/usr/local/src/Python-2.0

Note that the directory needs to contain already configured and compiled Python. In other words, you must at
least run./configureandmake.

Also note that while it is possible to point the--with-python to a version of Python different from the one
installed in your standard PATH, you will need to have that version of Python installed as well. This is because
the path to the Python library, which is retrieved from the ‘python’ binary is going to point to the place where
Python would be ultimately installed, not the source deirectory. Generally, it’s best to try to keep the version of
Python that you use for modpython the same as the one you use everywhere on the system.

2.2.2 Running make

• If possible, the./configure script will default to DSO compilation, otherwise, it will default to static. To stay
with whatever./configuredecided, simply run

$ make

Or, if you would like to be specific, givemakeadsoor static target:

$ make dso

OR

4 Chapter 2. Installation



$ make static

2.3 Installing

2.3.1 Running make install

• This part of the installation needs to be done as root.

$ su
# make install

– For DSO, this will simply copy the library into your Apachelibexec directory, where all the other modules
are.

– For static, it will copy some files into your Apache source tree.

– Lastly, it will install the Python libraries insite-packages and compile them.

NB: If you wish to selectively install just the Python libraries, the static library or the DSO (which may not
always require superuser privileges), you can use the followingmake targets: install py lib , install static
andinstall dso

2.3.2 Configuring Apache

• If you compiled mod python as a DSO, you will need to tell Apache to load the module by adding the following
line in the Apache configuration file, usually calledhttpd.conf or apache.conf:

LoadModule python_module libexec/mod_python.so

The actual path tomod python.so may vary, but make install should report at the very end exactly where
mod python.sowas placed and how theLoadModule directive should appear.

If your Apache configuration usesClearModuleList directive, you will need to add modpython to the
module list in the Apache configuration file:

AddModule mod_python.c

NB: Some (not all) RedHat Linux users reported that modpython needs to be first in the module list, or Apache
will crash.

• If you used the static installation, you now need to recompile Apache:

$ cd ../src/apache_1.3.12
$ ./configure --activate-module=src/modules/python/libpython.a
$ make

Or, if you prefer the old ”Configure” style, editsrc/Configuration to have

2.3. Installing 5



AddModule modules/python/libpython.a

then run

$ cd src
$ ./Configure
$ Make

2.4 Testing

1. Make some directory that would be visible on your web site, for example, htdocs/test.

2. Add the following Apache directives, which can appear in either the main server configuration file, or.htaccess.
If you are going to be using the.htaccess file, you will not need the<Directory> tag below, and you will
need to make sure theAllowOverride directive applicable to this directory has at leastFileInfo specified.
(The default isNone, which will not work.)

<Directory /some/directory/htdocs/test>
AddHandler python-program .py
PythonHandler mptest
PythonDebug On

</Directory>

(Substitute/some/directory above for something applicable to your system, usually your Apache ServerRoot)

3. At this time, if you made changes to the main configuration file, you will need to restart Apache in order for the
changes to take effect.

4. Edit mptest.py file in the htdocs/test directory so that is has the following lines (be careful when cutting and
pasting from your browser, you may end up with incorrect indentation and a syntax error):

from mod_python import apache

def handler(req):
req.send_http_header()
req.write("Hello World!")
return apache.OK

5. Point your browser to the URL referring to themptest.py; you should see"Hello World!" . If you didn’t -
refer to the troubleshooting section next.

6. If everything worked well, move on to Chapter 3,Tutorial.

2.5 Troubleshooting

There are a couple things you can try to identify the problem:

• Carefully study the error output, if any.

• Check the server error log file, it may contain useful clues.

6 Chapter 2. Installation



• Try running Apache from the command line with an -X argument:

./httpd -X

This prevents it from backgrounding itself and may provide some useful information.

• Ask on the modpython list. Make sure to provide specifics such as:

– Your operating system type, name and version.

– Your Python version, and any unusual compilation options.

– Your Apache version.

– Relevant parts of the Apache config, .htaccess.

– Relevant parts of the Python code.

2.5. Troubleshooting 7



8



CHAPTER

THREE

Tutorial

So how can I make this work?

This is a quick guide to getting started with modpython programming once you have it installed. This isnot an
installation manual!

It is also highly recommended to read (at least the top part of) Section 4,Python APIafter completing this tutorial.

3.1 Quick Overview of how Apache Handles Requests

It may seem like a little too much for starters, but you need to understand what a handler is in order to use modpython.
And it’s really rather simple.

Apache processes requests inphases. For example, the first phase may be to authenticate the user, the next phase to
verify whether that user is allowed to see a particular file, then (next phase) read the file and send it to the client. Most
requests consist of two phases: (1) read the file and send it to the client, then (2) log the request. Exactly which phases
are processed and how varies greatly and depends on the configuration.

A handler is a function that processes one phase. There may be more than one handler available to process a particular
phase, in which case they are called in sequence. For each of the phases, there is a default Apache handler (most of
which by default perform only very basic functions or do nothing), and then there are additional handlers provided by
Apache modules, such as modpython.

Mod python provides every possible handler to Apache. Modpython handlers by default do not perform any func-
tion, unless specifically told so by a configuration directive. These directives begin with ‘Python ’ and end with
‘Handler ’ (e.g. PythonAuthenHandler ) and associate a phase with a Python function. So the main function of
mod python is to act as a dispatcher between Apache handlers and Python functions written by a developer like you.

The most commonly used handler isPythonHandler . It handles the phase of the request during which the actual
content is provided. We will refer to this handler from here on asgenerichandler. The default Apache action for this
handler would be to read the file and send it to the client. Most applications you will write will use this one handler. If
you insist on seeing all the possible handlers, refer to Section 5,Apache Directives.

3.2 So what Exactly does Mod-python do?

Let’s pretend we have the following configuration:

9



<Directory /mywebdir>
AddHandler python-program .py
PythonHandler myscript

</Directory>

NB: /mywebdir is an absolute physical path.

And let’s say that we have a python program (windows users: substitute forward slashes for backslashes)
‘ /mywedir/myscript.py’ that looks like this:

from mod_python import apache

def handler(req):

req.content_type = "text/plain"
req.send_http_header()
req.write("Hello World!")

return apache.OK

Here is what’s going to happen: TheAddHandler directive tells Apache that any request for any file ending with
‘ .py’ in the ‘/mywebdir’ directory or a subdirectory thereof needs to be processed by modpython.

When such a request comes in, Apache starts stepping through its request processing phases calling handlers in
mod python. The modpython handlers check if a directive for that handler was specified in the configuration.
(Remember, it acts as a dispatcher.) In our example, no action will be taken by modpython for all handlers except for
the generic handler. When we get to the generic handler, modpython will notice ‘PythonHandler myscript ’
directive and do the following:

1. If not already done, prepend the directory in which thePythonHandler directive was found tosys.path .

2. Attempt to import a module by namemyscript . (Note that if myscript was in a subdirectory of the
directory wherePythonHandler was specified, then the import would not work because said subdirectory
would not be in thesys.path . One way around this is to use package notation, e.g. ‘PythonHandler
subdir.myscript ’.)

3. Look for a function calledhandler in myscript .

4. Call the function, passing it aRequest object. (More on what aRequest object is later)

5. At this point we’re inside the script:

•
from mod_python import apache

This imports the apache module which provides us the interface to Apache. With a few rare exceptions,
every mod python program will have this line.

•
def handler(req):

This is ourhandler function declaration. It is called"handler" because modpython takes the name
of the directive, converts it to lower case and removes the word"python" . Thus"PythonHandler"
becomes"handler" . You could name it something else, and specify it explicitly in the directive using
the special ‘:: ’ notation. For example, if the handler function was called ‘spam’, then the directive would
be ‘PythonHandler myscript::spam ’.

10 Chapter 3. Tutorial



Note that a handler must take one argument - the mysteriousRequest object. There is really no mystery
about it though. TheRequest object is an object that provides all of the information about this particular
request - such as the IP of client, the headers, the URI, etc. The communication back to the client is also
done via theRequest object, i.e. there is no ”response” object.

•
req.content_type = "text/plain"

This sets the content type to"text/plain" . The default is usually"text/html" , but since our
handler doesn’t produce any html,"text/plain" is more appropriate.

•
req.send_http_header()

This function sends the HTTP headers to the client. You can’t really start writing to the client without
sending the headers first. Note that one of the headers is"Content-Type" . So if you want to set
custom content-types, you better do it before you callreq.send http header() .

• req.write("Hello Wordl!")

This writes the"Hello World!" string to the client. (Did I really have to explain this one?)

•
return apache.OK

This tells Apache that everything went OK and that the request has been processed. If things
did not go OK, that line could be returnapache.HTTP INTERNAL SERVERERRORor return
apache.HTTP FORBIDDEN. When things do not go OK, Apache will log the error and generate an
error message for the client.

Some food for thought: If you were paying attention, you noticed that nowhere did it say that in order
for all of the above to happen, the URL needs to refer tomyscript.py. The only requirement was that it
refers to a.py file. In fact the name of the file doesn’t matter, and the file referred to in the URL doesn’t
have to exist. So, given the above configuration, ‘http://myserver/mywebdir/myscript.py ’ and
‘http://myserver/mywebdir/montypython.py ’ would give the exact same result.

At this point, if you didn’t understand the above paragraph, go back and read it again, until you do.

3.3 Now something More Complicated - Authentication

Now that you know how to write a primitive handler, let’s try something more complicated.

Let’s say we want to password-protect this directory. We want the login to be ”spam”, and the password to be ”eggs”.

First, we need to tell Apache to call ourauthenticationhandler when authentication is needed. We do this by adding
thePythonAuthenHandler . So now our config looks like this:

<Directory /mywebdir>
AddHandler python-program .py
PythonHandler myscript
PythonAuthenHandler myscript

</Directory>

Notice that the same script is specified for two different handlers. This is fine, because if you remember, modpython
will look for different functions within that script for the different handlers.

3.3. Now something More Complicated - Authentication 11



Next, we need to tell Apache that we are using Basic HTTP authentication, and only valid users are allowed (this is
fairly basic Apache stuff, so I’m not going to go into details here). Our config looks like this now:

<Directory /mywebdir>
AddHandler python-program .py
PythonHandler myscript
PythonAuthenHandler myscript
AuthType Basic
AuthName "Restricted Area"
require valid-user

</Directory>

Now we need to write an authentication handler function in ‘myscript.py’. A basic authentication handler would look
like this:

def authenhandler(req):

pw = req.get_basic_auth_pw()
user = req.connection.user
if user == "spam" and pw == "eggs":

return apache.OK
else:

return apache.HTTP_UNAUTHORIZED

Let’s look at this line by line:

• def authenhandler(req):

This is the handler function declaration. This one is calledauthenhandler because, as we already described
above, modpython takes the name of the directive (PythonAuthenHandler ), drops the word ”Python” and
converts it lower case.

•
pw = req.get_basic_auth_pw()

This is how we obtain the password. The basic HTTP authentication transmits the password in base64 encoded
form to make it a little bit less obvious. This function decodes the password and returns it as a string.

•
user = req.connection.user

This is how you obtain the username that the user entered. In case you’re wondering, theconnection member
of theRequest object is an object that contains information specific to aconnection. With HTTP Keep-Alive,
a single connection can serve multiple requests.

NOTE: The two lines above MUST be in that order. The reason is thatconnection.user is assigned a
value by theget basic auth pw() function. If you try to use theconnection.user value without
callingget basic auth pw() first, it will be None.

• if user == "spam" and pw == "eggs":
return apache.OK

12 Chapter 3. Tutorial



We compare the values provided by the user, and if they are what we were expecting, we tell Apache to go ahead
and proceed by returningapache.OK . Apache will then proceed to the next handler. (which in this case would
behandler() if it’s a .py file).

•
else:

return apache.HTTP_UNAUTHORIZED

Else, we tell Apache to returnHTTP UNAUTHORIZEDto the client.

3.4 Publisher Handler Makes it Easy

At this point you may be wondering if modpython is all that useful after all. You may find yourself asking: ”If there
can only be one handler per directory, how am I to structure my application?”

Enter thepublisher handler provided as one of the standard modpython handlers. To get the publisher handler
working, you will need the following lines in your config:

AddHandler python-program .py
PythonHandler mod_python.publisher

The following example will demonstrate a simple feedback form. The form will ask for the name, e-mail address and
a comment and the will construct an e-mail to the webmaster using the information submitted by the user.

Here is the html for the form:

<html>
Please provide feedback below:
<p>
<form action="form/email" method="POST">

Name: <input type="text" name="name"><br>
Email: <input type="text" name="email"><br>
Comment: <textarea name="comment" rows=4 cols=20></textarea><br>
<input type="submit">

</form>
</html>

Note theaction element of the<form> tag points toform/email . We are going to create a file calledform.py,
like this:

3.4. Publisher Handler Makes it Easy 13



import smtplib

def email(req, name, email, comment):

# see if the user provided all the parameters
if not (name and email and comment):

return "A required parameter is missing, \
please go back and correct the error"

# create the message text
msg = """\

From: %s
Subject: feedback
To: webmaster

I have the following comment:

%s

Thank You,

%s

""" % (email, comment, name)

# send it out
conn = smtplib.SMTP("localhost")
conn.sendmail(email, ["webmaster"], msg)
conn.quit()

# provide feedback to the user
s = """\

<html>

Dear %s,<br>

Thank You for your kind comments, we
will get back to you shortly.

</html>""" % name

return s

When the user clicks the Submit button, the publisher handler will load theemail function in theform module,
passing it the form fields as keyword arguments. Note that it will also pass theRequest object asreq . Note also
that you do not have to havereq as one of the arguments if you do not need it. The publisher handler is smart enough
to pass your function only those arguments that it will accept.

Also notice how it sends data back to the customer - via the return value of the function.

And last, but not the least, note how all the power of modpython is still available to this function, since it has access
to theRequest object. You can do all the same things you can do with a ”native” modpython handler, e.g. set
custom headers viareq.headers out , return errors by raisingapache.SERVER ERRORexceptions, write or
read directly to and from the client viareq.write andreq.read , etc.

Read Section 6.1Publisher Handlerfor more information on the publisher handler.

14 Chapter 3. Tutorial



CHAPTER

FOUR

Python API

4.1 Multiple Interpreters

When working with modpython, it is important to be aware of a feature of Python that is normally not used when
using the language for writing scripts to be run from command line. This feature is not available from within Python
itself and can only be accessed through theC language API.

Python C API provides the ability to createsubinterpreters. A more detailed description of a subinterpreter is given
in the documentation for thePy NewInterpreter() function. For this discussion, it will suffice to say that each
subinterpreter has its own separate namespace, not accessible from other subinterpreters. Subinterpreters are very
useful to make sure that separate programs running under the same Apache server do not interfere with one another..

At server start-up or modpython initialization time, modpython initializes an interpreter calledmaininterpreter. The
main interpreter contains a dictionary of subinterpreters. Initially, this dictionary is empty. With every hit, as needed,
subinterpreters are created, and references to them are stored in this dictionary. The dictionary is keyed on a string, also
known asinterpreter name. This name can be any string. The main interpreter is named ‘main interpreter ’.
The way all other interpreters are named can be controlled byPythonInterp* directives. Default behaviour is
to name interpreters using the Apache virtual server name (ServerName directive). This means that all scripts in
the same vrtual server execute in the same subinterpreter, but scripts in different virtual servers execute in different
subinterpreters with completely separate namespaces.PythonInterpPerDirectory and PythonInterp-
PerDirective directives alter the naming convention to use the absolute path of the directory being accessed, or
the directory in which thePython*Handler was encountered, respectively.PythonInterpreter can be used
to force the interpreter name to a specific string overriding any naming conventions.

Once created, a subinterpreter will be reused for subsequent requests. It is never destroyed and exists until the Apache
child process dies.

See Also:

Python C Language API
(http://www.python.org/doc/current/api/api.html)

Python C Language API

4.2 Overview of a Handler

A handleris a function that processes a particular phase of a request. Apache processes requests in phases - read the
request, process headers, provide content, etc. For every phase, it will call handlers, provided by either the Apache
core or one of its modules, such as modpython, which passes control to functions provided b the user and written in
Python. A handler written in Python is not any different than a handler written in C, and follows these rules:

A handler function will always be passed a reference to aRequest object. (Throughout this manual, theRequest
object is often referred to by thereq variable.)

15



Every handler can return:

• apache.OK , meaning this phase of the request was handled by this handler and no errors occurred.

• apache.DECLINED , meaning this handler refused to handle this phase of the requestand Apache needs to
look for another handler.

• apache. HTTP ERROR, meaning an HTTP error occurred.HTTP ERRORcan be:

HTTP_CONTINUE = 100
HTTP_SWITCHING_PROTOCOLS = 101
HTTP_PROCESSING = 102
HTTP_OK = 200
HTTP_CREATED = 201
HTTP_ACCEPTED = 202
HTTP_NON_AUTHORITATIVE = 203
HTTP_NO_CONTENT = 204
HTTP_RESET_CONTENT = 205
HTTP_PARTIAL_CONTENT = 206
HTTP_MULTI_STATUS = 207
HTTP_MULTIPLE_CHOICES = 300
HTTP_MOVED_PERMANENTLY = 301
HTTP_MOVED_TEMPORARILY = 302
HTTP_SEE_OTHER = 303
HTTP_NOT_MODIFIED = 304
HTTP_USE_PROXY = 305
HTTP_TEMPORARY_REDIRECT = 307
HTTP_BAD_REQUEST = 400
HTTP_UNAUTHORIZED = 401
HTTP_PAYMENT_REQUIRED = 402
HTTP_FORBIDDEN = 403
HTTP_NOT_FOUND = 404
HTTP_METHOD_NOT_ALLOWED = 405
HTTP_NOT_ACCEPTABLE = 406
HTTP_PROXY_AUTHENTICATION_REQUIRED= 407
HTTP_REQUEST_TIME_OUT = 408
HTTP_CONFLICT = 409
HTTP_GONE = 410
HTTP_LENGTH_REQUIRED = 411
HTTP_PRECONDITION_FAILED = 412
HTTP_REQUEST_ENTITY_TOO_LARGE = 413
HTTP_REQUEST_URI_TOO_LARGE = 414
HTTP_UNSUPPORTED_MEDIA_TYPE = 415
HTTP_RANGE_NOT_SATISFIABLE = 416
HTTP_EXPECTATION_FAILED = 417
HTTP_UNPROCESSABLE_ENTITY = 422
HTTP_LOCKED = 423
HTTP_FAILED_DEPENDENCY = 424
HTTP_INTERNAL_SERVER_ERROR = 500
HTTP_NOT_IMPLEMENTED = 501
HTTP_BAD_GATEWAY = 502
HTTP_SERVICE_UNAVAILABLE = 503
HTTP_GATEWAY_TIME_OUT = 504
HTTP_VERSION_NOT_SUPPORTED = 505
HTTP_VARIANT_ALSO_VARIES = 506
HTTP_INSUFFICIENT_STORAGE = 507
HTTP_NOT_EXTENDED = 510

16 Chapter 4. Python API



As an alternative to returning an HTTP error code, handlers can signal an error byraising the
apache.SERVER RETURNexception, and providing an HTTP error code as the exception value, e.g.

raise apache.SERVER_RETURN, apache.HTTP_FORBIDDEN

Handlers can send content to the client using theRequest.write() method. Before sending the body of the
response, headers must be sent using theRequest.send http header() method.

Client data, such as POST requests, can be read by using theRequest.read() function.

NOTE: The directory of the ApachePython*Handler directive in effect is prepended to thesys.path . If the
directive was specified in a server config file outside any<Directory> , then the directory is unknown and not
prepended.

An example of a minimalistic handler might be:

from mod_python import apache

def requesthandler(req):
req.content_type = "text/plain"
req.send_http_header()
req.write("Hello World!")
return apache.OK

4.3 apache – Access to Apache Internals.

The Python Application Programmer interface to Apache internals is contained in a module appropriately named
apache , located inside themod python package. This module provides some important objects that map to Apache
internal structures, as well as some useful functions, all documented below.

Theapache module can only be imported by a script running under modpython. This is because it depends on a
built-in module apache provided by modpython. It is best imported like this:

from mod_python import apache

mod python.apache module defines the following objects and functions. For a more in-depth look at Apache
internals, see theShambhala API Notes

log error ( message[, level, server])
An interface to the Apacheap log error() function. messageis a string with the error message,level is one of
the following constants:

APLOG_EMERG
APLOG_ALERT
APLOG_CRIT
APLOG_ERR
APLOG_WARNING
APLOG_NOTICE
APLOG_INFO
APLOG_DEBUG
APLOG_NOERRNO

serveris a reference to aRequest.server object. Ifserveris not specified, then the error will be logged to

4.3. apache – Access to Apache Internals. 17



the default error log, otherwise it will be written to the error log for the appropriate virtual server.

make table ()
Returns a new empty object of typemp table . See Section 4.3.1 for a description of a table object.

4.3.1 Table Object (mp table)

The table object is a Python mapping to the Apache table. The table object performs just like a dictionary, with the
only difference that key lookups are case insensitive.

Much of the information that Apache uses is stored in tables. For example,Request.header in and Re-
quest.headers out .

All the tables that modpython provides inside theRequest object are actual mappings to the Apache structures, so
changing the Python table also changes the underlying Apache table.

In addition to normal dictionary-like behavior, the table object also has the following method:

add ( key, val)
add() allows for creating duplicate keys, which is useful when multiple headers, such asSet-Cookie: are
required.

4.3.2 Request Object

The request object is a Python mapping to the Apacherequest rec structure.

The request object is a real Python object. You can dynamically assign attributes to it as a way to communicate
between handlers.

When a handler is invoked, it is always passed a single argument - theRequest object.

Request Methods

add handler ( htype, handler[, dir ])
Allows dynamic handler registration. htype is a string containing the name of any of the apache
Python*Handler directives, e.g. ‘PythonHandler ’. handleris a string containing the name of the mod-
ule and the handler function. Optionaldir is a string containing the name of the directory to be added to the
pythonpath. If no directory is specified, then, if there is already a handler of the same type specified, its directory
is inherited, otherwise the directory of the presently executing handler is used.

A handler added this way only persists throughout the life of the request. It is possible to register more handlers
while inside the handler of the same type. One has to be careful as to not to create an infinite loop this way.

Dynamic handler registration is a useful technique that allows the code to dynamically decide what will happen
next. A typical example might be aPythonAuthenHandler that will assign differentPythonHandlers
based on the authorization level, something like:

if manager:
req.add_handler("PythonHandler", "menu::admin")

else:
req.add_handler("PythonHandler", "menu::basic")

Note: There is no checking being done on the validity of the handler name. If you pass this function an invalid
handler it will simply be ignored.

add common vars ()
Calls the Apache ap add common vars() function. After a call to this method, Re-
quest.subprocess env will contain a lot of CGI information.

18 Chapter 4. Python API



child terminate ()
Terminate a child process. This should terminate the current child process in a nice fashion.

This method does nothing in multithreaded environments (e.g. Windows).

get basic auth pw()
Returns a string containing the password when Basic authentication is used.

get config ()
Returns a reference to the table object containing the configuration in effect for this request. The table has
directives as keys, and their values, if any, as values.

get dirs ()
Returns a reference to the table object keyed by directives currently in effect and having directory names
of where the particular directive was last encountered as values. For every key in the table returned by
get config() , there will be a key in this table. If the directive was in one of the server config files out-
side of any<Directory> , then the value will be an empty string.

get remote host ( type)
Returns the a string with the remote client’s DNS name or IP orNone on failure. The first call to this function
may entail a DNS look up, but subsequent calls will use the cached result from the first call.

The optional type argument can specify the following:

•apache.REMOTE HOSTLook up the DNS name. Fail if Apache directiveHostNameLookups is off
or the hostname cannot be determined.

•apache.REMOTE NAME(Default) Return the DNS name if possible, or the IP (as a string in dotted
decimal notation) otherwise.

•apache.REMOTE NOLOOKUPDon’t perform a DNS lookup, return an IP. Note: if a lookup was per-
formed prior to this call, then the cached host name is returned.

•apache.REMOTE DOUBLEREVForce a double-reverse lookup. On failure, return None.

get options ()
Returns a reference to the table object containing the options set by thePythonOption directives.

read ( [ len])
Reads at mostlen bytes directly from the client, returning a string with the data read. If thelen argument is
negative or ommitted, reads all data given by the client.

This function is affected by theTimeout Apache configuration directive. The read will be aborted and an
IOError raised if theTimeout is reached while reading client data.

This function relies on the client providing theContent-length header. Absense of theContent-
length header will be treated as ifContent-length: 0 was supplied.

IncorrectContent-length may cause the function to try to read more data than available, which will make
the function block until aTimeout is reached.

readline ( [ len])
Like read() but reads until end of line.

Note that in accordance with the HTTP specification, most clients will be terminating lines with ”\r\n” rather
than simply ”\n”.

register cleanup ( callable[, data])
Registers a cleanup. Argumentcallablecan be any callable object, the optional argumentdatacan be any object
(default isNone). At the very end of the request, just before the actual request record is destroyed by Apache,
callablewill be called with one argument,data.

send http header ()
Starts the output from the request by sending the HTTP headers. This function has no effect when called more

4.3. apache – Access to Apache Internals. 19



than once within the same request. Any manipulation ofRequest.headers out after this function has
been called is pointless since the headers have already been sent to the client.

write ( string)
Writesstringdirectly to the client, then flushes the buffer.

Request Members

connection
A connection object associated with this request. See Connection Object below for details.(Read-Only)

server
A server object associate with this request. See Server Object below for details.(Read-Only)

next
If this is an internal redirect, therequest object we redirect to.(Read-Only)

prev
If this is an internal redirect, therequest object we redirect from.(Read-Only)

main
If this is a sub-request, pointer to the main request.(Read-Only)

the request
String containing the first line of the request.(Read-Only)

assbackwards
Is this an HTTP/0.9 ”simple” request?(Read-Only)

header only
A boolean value indicating HEAD request, as opposed to GET.(Read-Only)

protocol
Protocol, as given by the client, or ”HTTP/0.9”. Same as CGI SERVERPROTOCOL.(Read-Only)

proto num
Integer. Number version of protocol; 1.1 = 1001(Read-Only)

request time
A long integer. When request started.(Read-Only)

status line
Status line. E.g. ”200 OK”.(Read-Only)

method
A string containing the method - ’GET’, ’HEAD’, ’POST’, etc. Same as CGI REQUESTMETHOD. (Read-
Only)

method number
Integer containg the method number.(Read-Only)

allowed
Integer. A bitvector of the allowed methods. Used in relation with METHODNOT ALLOWED. (Read-Only)

sent body
Integer. Byte count in stream is for body. (?)(Read-Only)

bytes sent
Long integer. Number of bytes sent.(Read-Only)

mtime
Long integer. Time the resource was last modified.(Read-Only)

20 Chapter 4. Python API



boundary
String. Multipart/byteranges boundary.(Read-Only)

range
String. TheRange: header.(Read-Only)

clength
Long integer. The ”real” content length. (I.e. can only be used after the content’s been read?)(Read-Only)

remaining
Long integer. Bytes left to read. (Only makes sense inside a read operation.)(Read-Only)

read length
Long integer. Number of bytes read.(Read-Only)

read body
Integer. How the request body should be read. (?)(Read-Only)

read chunked
Boolean. Read chunked transfer coding.(Read-Only)

content type
String. The content type. Modpython maintains an internal flag (content type set ) to keep track of
whethercontent type was set manually from within Python. The publisher handler uses this flag; when
content type isn’t set, it attempts to guess the content type by examining the first few bytes of the output.

headers in
A table object containing headers sent by the client.

headers out
A table object representing the headers to be sent to the client. Note that manipulating this table after the
Request.send http headers() has been called is meaningless, since the headers have already gone
out to the client.

err headers out
These headers get send with the error response, instead of headersout.

handler
The hame of the handler currently being processed. In all cases with modpython, this should be ”python-
program”.(Read-Only)

content encoding
String. Content encoding.(Read-Only)

vlist validator
Integer. Variant list validator (if negotiated).(Read-Only)

no cache
Boolean. No cache if true.(Read-Only)

no local copy
Boolean. No local copy exists.(Read-Only)

unparsed uri
The URL without any parsing performed.(Read-Only)

uri
The path portion of the URI.(Read-Only)

filename
String. File name being requested.(Read-Only)

path info
String. What follows after the file name, but is before query args, if anything. Same as CGI PATHINFO.

4.3. apache – Access to Apache Internals. 21



(Read-Only)

args
String. Same as CGI QUERYARGS.(Read-Only)

4.3.3 Connection Object (mp conn)

The connection object is a Python mapping to the Apache connrec structure.

Connection Members

server
A server object associated with this connection.(Read-Only)

base server
A server object for the physical vhost that this connection came in through.(Read-Only)

child num
Integer. The number of the child handling the request.(Read-Only)

local addr
The (address, port) tuple for the server.(Read-Only)

remote addr
The (address, port) tuple for the client.(Read-Only)

remote ip
String with the IP of the client. Same as CGI REMOTEADDR. (Read-Only)

remote host
String. The DNS name of the remote client. None if DNS has not been checked, ”” (empty string) if no name
found. Same as CGI REMOTEHOST.(Read-Only)

remote logname
Remote name if using RFC1413 (ident). Same as CGI REMOTEIDENT. (Read-Only)

user
If an authentication check is made, this will hold the user name.NOTE: You must call
get basic auth pw() before using this value. Same as CGI REMOTEUSER.(Read-Only)

ap auth type
Authentication type. (None == basic?). Same as CGI AUTHTYPE. (Read-Only)

keepalives
The number of times this connection has been used. (?)(Read-Only)

local ip
String with the IP of the server.(Read-Only)

local host
DNS name of the server.(Read-Only)

4.3.4 Server Object (mp server)

The request object is a Python mapping to the Apacherequest rec structure. The server structure describes the
server (possibly virtual server) serving the request.

22 Chapter 4. Python API



Server Methods

register cleanup ( request, callable[, data])
Registers a cleanup. Very similar toreq.register cleanup() , except this cleanup will be executed at
child termination time. This function requires one extra argument - the request object.

Server Members

defn name
String. The name of the configuration file where the server definition was found.(Read-Only)

defn line number
Integer. Line number in the config file where the server definition is found.(Read-Only)

srm confname
Location of the srm config file.(Read-Only)

server admin
Value of theServerAdmin directive.(Read-Only)

server hostname
Value of theServerName directive. Same as CGI SERVERNAME. (Read-Only)

port
Integer. TCP/IP port number. Same as CGI SERVERPORT.(Read-Only)

error fname
The name of the error log file for this server, if any.(Read-Only)

loglevel
Integer. Logging level.(Read-Only)

is virtual
Boolean. True if this is a virtual server.(Read-Only)

timeout
Integer. Value of theTimeout directive.(Read-Only)

keep alive timeout
Integer. Keepalive timeout.(Read-Only)

keep alive max
Maximum number of requests per keepalive.(Read-Only)

send buffer size
Integer. Size of the TCP send buffer.(Read-Only)

path
String. Path forServerPath (Read-Only)

pathlen
Integer. Path length.(Read-Only)

server uid
UID under which the server is running.(Read-Only)

server gid
GID under which the server is running.(Read-Only)

4.3. apache – Access to Apache Internals. 23



4.3.5 Debugging

Mod python supports the ability to execute handlers within the Python debugger (pdb) via thePythonEnablePdb
Apache directive. Since the debugger is an interactive tool, httpd must be invoked with the -X option. (NB: When pdb
starts, you will not see the usual>>> prompt. Just type in the pdb commands like you would if there was one.)

4.3.6 Internal Callback Object

The Apache server interfaces with the Python interpreter via a callback object obCallBack. When a subinterpreter is
created, an instance of obCallBack is created in this subinterpreter. Interestingly, obCallBack is not written in C, it is
written in Python and the code for it is in the apache module. Modpython only uses the C API to import apache and
then instantiate obCallBack, storing a reference to the instance in the interpreter dictionary described above. Thus, the
values in the interpreter dictionary are callback object instances.

When a request handler is invoked by Apache, modpython uses the obCallBack reference to call its method Dispatch,
passing it the name of the handler being invoked as a string.

The Dispatch method then does the rest of the work of importing the user module, resolving the callable object in it
and calling it passing it a request object.

4.4 util – Miscellaneous Utilities

Theutil module provides a number of utilities handy to a web application developer.

The functionality provided byutil is also available in the standard Python librarycgi module, but the implemen-
tation incgi is specific to the CGI environment, making it not the most efficient one for modpython. For example,
the code inutil does not use the environment variables since most of the information is available directly from the
Request object. Some of the functions in theutil module are implemented in C for even better performance.

The recommended way of using this module is:

from mod_python import util

See Also:

Common Gateway Interface RFC Project Page
(http://CGI-Spec.Golux.Com/)

for detailed information on the CGI specification

4.4.1 FieldStorage class

Access to form data is provided via theFieldStorage class. This class is similar to the standard library module
cgi FieldStorage (but there are a few differences).

classFieldStorage ( req[, keep blank values, strict parsing])
This class provides uniform access to HTML form data submitted by the client.req is an instance of the
mod pythonRequest object.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded form data
should be treated as blank strings. The default is false, which means that blank values are ignored as if they
were not included.

The optional argumentstrict parsingis not yet implemented.

24 Chapter 4. Python API



While being instantiated, theFieldStorage class reads all of the data provided by the client. Since all data provided
by the client is consumed at this point, there should be no more than oneFieldStorage class instantiated per signle
request, nor should you make any attempts to read client data before or after instantiating aFieldStorage .

The data read from the client is then parsed into separate fields and packaged inField objects, one per field. For
HTML form inputs of typefile , a temporary file is created that can later be accessed via thefile attribute of a
Field object.

The FieldStorage class has a mapping object interface, i.e. it can be treated like a dictionary. When used as a
dictionary, the dictionary keys are form input names, and the returned dictionary value can be:

• A string, containing the form input value. This is only when there is a single value corresponding to the input
name.

• An instances of aField class, if the input is a file upload.

• A list of strings and/orField objects. This is when multiple values exist, such as for a<select> HTML
form element.

Note that unlike the standard librarycgi moduleFieldStorage class, aField object is returnedonly when it is
a file upload. This means that you do not need to use the.value attribute to access values of fields in most cases.

In addition to standard mapping object methods,FieldStorage objects have the following attributes:

list
This is a list ofField objects, one for each input. Multiple inputs with the same name will have multiple
elements in this list.

Field class

classField ()
This class is used internally byFieldStorage and is not meant to be instantiated by the user. Each instance
of aField class represents an HTML Form input.

Field instances have the following attributes:

name
The input name.

value
The input value. This attribute can be used to read data from a file upload as well, but one has to excercise
caution when dealing with large files since when accessed viavalue , the whole file is read into memory.

file
This is a file object. For file uploads it points to a temporary file. For simple values, it is aStringIO object,
so you can read simple string values via this attribute instead of using thevalue attribute as well.

filename
The name of the file as provided by the client.

type
The content-type for this input as provided by the client.

type opyions
This is what follows the actual content type in thecontent-type header provided by the client, if anything.
This is a dictionary.

disposition
The value of the first part of thecontent-disposition header.

4.4. util – Miscellaneous Utilities 25



disposition options
The second part (if any) of thecontent-disposition header in the form of a dictionary.

See Also:

RFC 1867, “Form-based File Upload in HTML”
for a description of form-based file uploads

4.4.2 Other functions

parse qs ( qs[, keep blank values, strict parsing])
This functnion is functionally equivalent to the standard librarycgi parse qs , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict parsingargument is not yet implemented.

parse qsl ( qs[, keep blank values, strict parsing])
This functnion is functionally equivalent to the standard librarycgi parse qsl , except that it is written in C
and is much faster.

Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

Note: Thestrict parsingargument is not yet implemented.

26 Chapter 4. Python API



CHAPTER

FIVE

Apache Configuration Directives

5.1 Handlers

5.1.1 Python*Handler Directive Syntax

All Python*Handler directives have the following syntax:

Python*Handler handler [handler] ...

Wherehandleris a callable object (e.g. a function) that accepts a single argument - request object.

Multiple handlers can be specified on a single line, in which case they will be called sequentially, from left to right.
Same handler directives can be specified multiple times as well, with the same result - all handlers listed will be
executed sequentially, from first to last. If any handler in the sequence returns a value other thanapache.OK , then
execution of all subsequent handlers is aborted.

A handlerhas the following syntax:

module[::object] [module::[object]] ...

Where module can be a full module name (package dot notation is accepted), and the optional object is the name of
an object inside the module.

Object can also contain dots, in which case it will be resolved from left to right. During resolution, if modpython
encounters an object of type<class> , it will try instantiate it passing it a single argument, a request object.

If no object is specified, then it will default to the directive of the handler, all lower case, with the word ‘Python ’
removed. E.g. the default object for PythonAuthenHandler would be authenhandler.

Example:

PythonAuthzHandler mypackage.mymodule::checkallowed

For more information on handlers, see Overview of a Handler.

Side note: The ”::” was chosen for performance reasons. In order for Python to use objects inside modules, the
modules first need to be imported. However, if the separator were simply a ”.”, it would involve a much more complex
process of sequentially evaluating every word to determine whether it is a package, module, class etc. Using the
(admittedly un-Python-like) ”::” takes the time consuming work of figuring out where the module ends and the object
inside of it begins away from modpython resulting in a modest performance gain..

27



5.1.2 PythonPostReadRequestHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called after the request has been read but before any other phases have been processed. This is useful
to make decisions based upon the input header fields.

NOTE: At the time when this phase of the request is being processed, the URI has not been translated into a path
name, therefore this directive will never be executed by Apache if specified within<Directory> , <Location> ,
<File> directives or in an ‘.htaccess’ file. The only place this can be specified is the main configuration file, and the
code for it will execute in the main interpreter.

5.1.3 PythonTransHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine gives allows for an opportunity to translate the URI into an actual filename, before the server’s default
rules (Alias directives and the like) are followed.

NOTE: At the time when this phase of the request is being processed, the URI has not been translated into a path
name, therefore this directive will never be executed by Apache if specified within<Directory> , <Location> ,
<File> directives or in an ‘.htaccess’ file. The only place this can be specified is the main configuration file, and the
code for it will execute in the main interpreter.

5.1.4 PythonHeaderParserHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This handler is called to give the module a chance to look at the request headers and take any appropriate specific
actions early in the processing sequence.

5.1.5 PythonAccessHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to check for any module-specific restrictions placed upon the requested resource.

For example, this can be used to restrict access by IP number. To do so, you would returnHTTP FORBIDDENor
some such to indicate that access is not allowed.

28 Chapter 5. Apache Configuration Directives



5.1.6 PythonAuthenHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to check the authentication information sent with the request (such as looking up the user in a
database and verifying that the [encrypted] password sent matches the one in the database).

To obtain the username, usereq.connection.user . To obtain the password entered by the user, use the
req.get basic auth pw() function.

A return ofapache.OK means the authentication succeeded. A return ofapache.HTTP UNAUTHORIZEDwith
most browser will bring up the password dialog box again. A return ofapache.HTTP FORBIDDENwill usually
show the error on the browser and not bring up the password dialogagain. HTTP FORBIDDENshould be used
when authentication succeeded, but the user is not permitted to access a particular URL.

An example authentication handler might look like this:

def authenhandler(req):

pw = req.get_basic_auth_pw()
user = req.connection.user
if user == "spam" and pw == "eggs":

return apache.OK
else:

return apache.HTTP_UNAUTHORIZED

Note: req.get basic auth pw() must be called prior to using thereq.connection.user value. Apache
makes no attempt to decode the authentication information unlessreq.get basic auth pw() is called.

5.1.7 PythonTypeHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to determine and/or set the various document type information bits, like Content-type (viar-
>content type ), language, et cetera.

5.1.8 PythonFixupHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to perform any module-specific fixing of header fields, et cetera. It is invoked just before any
content-handler.

5.1. Handlers 29



5.1.9 PythonHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This is the main request handler. 99.99only provide this one handler.

5.1.10 PythonInitHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This handler is the first handler called in the request processing phases that is allowed both inside and outside ‘.htac-
cess’ and directory.

This handler is actually an alias to two different handlers. When specified in the main config file outside any di-
rectory tags, it is an alias toPostReadRequestHandler . When specified inside directory (wherePostRead-
RequestHandler is not allowed), it aliases toPythonHeaderParserHandler .

(This idea was borrowed from modperl)

5.1.11 PythonLogHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This routine is called to perform any module-specific logging activities over and above the normal server things.

5.1.12 PythonCleanupHandler

Syntax: Python*Handler Syntax
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

This is the very last handler, called just before the request object is destroyed by Apache.

Unlike all the other handlers, the return value of this handler is ignored. Any errors will be logged to the error log, but
will not be sent to the client, even if PythonDebug is On.

This handler is not a valid argument to therec.add handler() function. For dynamic clean up registration, use
req.register cleanup() .

Once cleanups have started, it is not possible to register more of them. Therefore,req.register cleanup()
has no effect within this handler.

Cleanups registered with this directive will executeaftercleanups registered withreq.register cleanup() .

30 Chapter 5. Apache Configuration Directives



5.2 Other Directives

5.2.1 PythonEnablePdb

Syntax: PythonEnablePdb{On, Off}
Default: PythonEnablePdb Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

When On, modpython will execute the handler functions within the Python debugger pdb using the
pdb.runcall() function.

Because pdb is an interactive tool, start httpd with the -X option when using this directive.

5.2.2 PythonDebug

Syntax: PythonDebug{On, Off}
Default: PythonDebug Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Normally, the traceback output resulting from uncaught Python errors is sent to the error log. With PythonDebug On
directive specified, the output will be sent to the client (as well as the log), except when the error isIOError while
writing, in which case it will go to the error log.

This directive is very useful during the development process. It is recommended that you do not use it production
environment as it may reveal to the client unintended, possibly sensitive security information.

5.2.3 PythonImport

Syntax: PythonImportmodule...
Context:directory
Module: mod python.c

Tells the server to import the Python module module at process startup. This is useful for initialization tasks that could
be time consuming and should not be done at the request processing time, e.g. initializing a database connection.

The import takes place at child process initialization, so the module will actually be imported once for every child
process spawned.

Note that at the time when the import takes place, the configuration is not completely read yet, so all other directives,
including PythonInterpreter have no effect on the behavior of modules imported by this directive. Because of this lim-
itation, the use of this directive should be limited to situations where it is absolutely necessary, and the recommended
approach to one-time initializations should be to use the Python import mechanism.

The module will be imported within the subinterpreter according with the directory name specified by the<Direc-
tory> directive. For all other subinterpreters, the module will not appear imported.

See also Multiple Interpreters.

5.2.4 PythonInterpPerDirectory

Syntax: PythonInterpPerDirectory{On, Off}
Default: PythonInterpPerDirectory Off

5.2. Other Directives 31



Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Instructs modpython to name subinterpreters using the directory of the file in the request (req.filename ) rather
than the the server name. This means that scripts in different directories will execute in different subinterpreters as
opposed to the default policy where scripts in the same virtual server execute in the same subinterpreter, even if they
are in different directories.

For example, assume there is a ‘/directory/subdirectory’. ‘ /directory’ has an .htaccess file with a PythonHandler direc-
tive. ‘/directory/subdirectory’ doesn’t have an .htacess. By default, scripts in /directory and ‘/directory/subdirectory’
would execute in the same interpreter assuming both directories are accessed via the same virtual server. With Python-
InterpPerDirectory, there would be two different interpreters, one for each directory.

Note: In early phases of the request prior to the URI translation (PostReadRequestHandler and TransHandler) the path
is not yet known because the URI has not been translated. During those phases and with PythonInterpPerDirectory on,
all python code gets executed in the main interpreter. This may not be exactly what you want, but unfortunately there
is no way around this.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.2.5 PythonInterpPerDirective

Syntax: PythonInterpPerDirective{On, Off}
Default: PythonInterpPerDirective Off
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Instructs modpython to name subinterpreters using the directory in which the Python*Handler directive currently in
effect was encountered.

For example, assume there is a ‘/directory/subdirectory’. ‘ /directory’ has an .htaccess file with a PythonHandler direc-
tive. ‘/directory/subdirectory’ has another ‘.htacess’ file with another PythonHandler. By default, scripts in ‘/directory’
and ‘/directory/subdirectory’ would execute in the same interpreter assuming both directories are in the same virtual
server. With PythonInterpPerDirective, there would be two different interpreters, one for each directive.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.2.6 PythonInterpreter

Syntax: PythonInterpreter name
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Forces modpython to use interpreter namedname, overriding the default behaviour or behaviour dictated by
PythonIterpPerDirectory or PythonInterpPerDirective directive.

This directive can be used to force execution that would normally occur in different subinterpreters to run in the same

32 Chapter 5. Apache Configuration Directives



one. When pecified in the DocumentRoot, it forces the whole server to run in one subinterpreter.

See Also:

Section 4.1 Multiple Interpreters
(pyapi-interps.html)

for more information

5.2.7 PythonHandlerModule

Syntax: PythonHandlerModule module
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

PythonHandlerModule can be used an alternative to Python*Handler directives. The module specified in this handler
will be searched for existence of functions matching the default handler function names, and if a function is found, it
will be executed.

For example, instead of:

PythonAutenHandler mymodule
PythonHandler mymodule
PythonLogHandler mymodule

one can simply say

PythonHandlerModule mymodule

5.2.8 PythonAutoReload

Syntax: PythonAutoReload{On, Off}
Default: PythonAutoReload On
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

If set to Off, instructs modpython not to check the modification date of the module file.

By default, mod python checks the time-stamp of the file and reloads the module if the module’s file modification
date is later than the last import or reload. This way changed modules get automatically reimported, elimitaing the
need to restart the server for every change.

Disaling autoreload is useful in production environment where the modules do not change; it will save some processing
time and give a small performance gain.

5.2.9 PythonOptimize

Syntax: PythonOptimize{On, Off}
Default: PythonOptimize Off
Context:server config
Module: mod python.c

5.2. Other Directives 33



Enables Python optimization. Same as the Python-O option.

5.2.10 PythonOption

Syntax: PythonOption key value
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

Assigns a key value pair to a table that can be later retrieved by thereq.get options() function. This is useful
to pass information between the apache configuration files (‘httpd.conf’, ‘ .htaccess’, etc) and the Python programs.

5.2.11 PythonPath

Syntax: PythonPathpath
Context:server config, virtual host, directory, htaccess
Override: not None
Module: mod python.c

PythonPath directive sets the PythonPath. The path must be specified in Python list notation, e.g.

PythonPath "[’/usr/local/lib/python2.0’, ’/usr/local/lib/site_python’, ’/some/other/place’]"

The path specified in this directive will replace the path, not add to it. However, because the value of the directive is
evaled, to append a directory to the path, one can specify something like

PythonPath "sys.path+[’/mydir’]"

Mod python tries to minimize the number of evals associated with the PythonPath directive because evals are slow
and can negatively impact performance, especially when the directive is specified in an ‘.htaccess’ file which gets
parsed at every hit. Modpython will remember the arguments to the PythonPath directive in the un-evaled form,
and before evaling the value it will compare it to the remembered value. If the value is the same, no action is taken.
Because of this, you should not rely on the directive as a way to restore the pythonpath to some value if your code
changes it.

Note that this directive should not be used as a security measure since the Python path is easily manipulated from
within the scripts.

34 Chapter 5. Apache Configuration Directives



CHAPTER

SIX

Standard Handlers

6.1 Publisher Handler

Thepublisher handler is a good way to avoid writing your own handlers and focus on rapid application develop-
ment. It was inspired byZopeZPublisher.

6.1.1 Introduction

To use the handler, you need the following lines in your configuration

<Directory /some/path}
SetHandler python-program
PythonHandler mod_python.publisher

</Directory>

This handler allows access to functions and variables within a module via URL’s. For example, if you have the
following module, called ‘hello.py’:

""" Publisher example """

def say(req, what="NOTHING"):
return "I am saying %s" % what

A URL http://www.mysite.com/hello.py/say would return ‘I am saying NOTHING ’. A URL
http://www.mysite.com/hello.py/say?what=hello would return ‘I am saying hello ’.

6.1.2 The Publishing Algorithm

The Publisher handler maps a URI directly to a Python variable or callable object, then, respectively, returns it’s string
representation or calls it returning the string representation of the return value.

Traversal

The Publisher handler locates and imports the module specified in the URI. The module location is determined from
theRequest.filename attribute. Before importing, the file extension, if any, is discarded.

35



Once module is imported, the remaining part of the URI up to the beginning of any query data (a.k.a. PATHINFO)
is used to find an object within the module. The Publisher handlertraversesthe path, one element at a time from left
to right, mapping the elements to Python object within the module.

The traversal will stop andHTTP NOTFOUNDwill be returned to the client if:

• Any of the traversed object’s names begin with an underscore (‘’). Use underscores to protect objects that
should not be accessible from the web.

• A module is encountered. Published objects cannot be modules for security reasons.

If an object in the path could not be found,HTTP NOT FOUNDis returned to the client.

Argument Matching and Invocation

Once the destination object is found, if it is callable and not a class, the Publisher handler will get a list of arguments
that the object expects. This list is compared with names of fields from HTML form data submitted by the client via
POSTor GET. Values of fields whose names match the names of callable object arguments will be passed as strings.

If the destination is not callable or is a class, then its string representation is returned to the client.

Authentication

The publisher handler provides simple ways to control access to modules and functions.

At every traversal step, the Publisher handler checks for presence ofauth and access attributes (in this
order), as well as auth realm attribute.

If auth is found and it is callable, it will be called with three arguments: theRequest object, a string
containing the user name and a string containing the password. If the return value ofauth is false, then
HTTP UNAUTHORIZEDis returned to the client (which will usually cause a password dialog box to appear).

If auth is a dictionary, then the user name will be matched against the key and the password against the value
associated with this key. If the key and password do not match,HTTP UNAUTHORIZEDis returned. Note that this
requires storing passwords as clear text in source code, which is not very secure.

auth can also be a constant. In this case, if it is false (i.e.None, 0, "" , etc.), thenHTTP UNAUTHORIZEDis
returned.

If there exists an auth realm string, it will be sent to the client as Authorization Realm (this is the text that
usually appears at the top of the password dialog box).

If access is found and it is callable, it will be called with two arguments: theRequest object and a string
containing the user name. If the return value ofaccess is false, thenHTTP FORBIDDENis returned to the
client.

If access is a list, then the user name will be matched against the list elements. If the user name is not in the
list, HTTP FORBIDDENis returned.

Similarly to auth , access can be a constant.

In the example below, only user ”eggs” with password ”spam” can access thehello function:

36 Chapter 6. Standard Handlers



__auth_realm__ = "Members only"

def __auth__(req, user, passwd):

if user == "eggs" and passwd == "spam" or \
user == "joe" and passwd == "eoj":

return 1
else:

return 0

def __access__(req, user):
if user == "eggs":

return 1
else:

return 0

def hello(req):
return "hello"

Here is the same functionality, but using an alternative technique:

__auth_realm__ = "Members only"
__auth__ = {"eggs":"spam", "joe":"eoj"}
__access__ = ["eggs"]

def hello(req):
return "hello"

Since functions cannot be assigned attributes, to protect a function, anauth or access function can be
defined within the function, e.g.:

def sensitive(req):

def __auth__(req, user, password):
if user == ’spam’ and password == ’eggs’:

# let them in
return 1

else:
# no access
return 0

# something involving sensitive information
return ’sensitive information‘

Note that this technique will also work if auth or access is a constant, but will not work is they are a
dictionary or a list.

The auth and access mechanisms exist independently of the standardPythonAuthenHandler. It is
possible to use, for example, the handler to authenticate, then theaccess list to verify that the authenticated

6.1. Publisher Handler 37



user is allowed to a particular function.

NOTE: In order for mod python to access auth , the module containing it must first be imported. Therefore,
any module-level code will get executed during the import even ifauth is false. To truly protect a module from
being accessed, use other authentication mechanisms, e.g. the Apachemod auth or with a mod pythonPythonAu-
thenHandlerhandler.

6.1.3 Form Data

In the process of matching arguments, the Publisher handler creates an instance ofFieldStorageclass. A reference to
this instance is stored in an attributeform of theRequest object.

Since aFieldStorage can only be instantiated once per request, one must not attept to instantiateFieldStorage
when using the Publisher handler and should useRequest.form instead.

6.2 CGI Handler

CGI handler is a handler that emulates the CGI environment under modpython.

Note that this is not a ”true” CGI environment in that it is emulated at the Python level.stdin andstdout are
provided by substitutingsys.stdin and sys.stdout , and the environment is replaced by a dictionary. The
implication is that any outside programs called from within this environment viaos.system , etc. will not see the
environment available to the Python program, nor will they be able to read/write from standard input/output with the
results expected in a ”true” CGI environment.

The handler is provided as a stepping stone for the migration of legacy code away from CGI. It is not recommended
that you settle on using this handler as the preferred way to use modpython for the long term.

To use it, simply add this to your ‘.htaccess’ file:

SetHandler python-program
PythonHandler mod_python.cgihandler

As of version 2.7, the cgihandler will properly reload even indirectly imported modules. This is done by saving a list
of loaded modules (sys.modules) prior to executing a CGI script, and then comparing it with a list of imported modules
after the CGI script is done. Modules (except for whose whosefile attribute points to the standard Python library
location) will be deleted from sys.modules thereby forcing Python to load them again next time the CGI script imports
them.

If you do not want the above behavior, edit the ‘cgihandler.py’ file and comment out the code delimited by ###.

Tests show the cgihandler leaking some memory when processing a lot of file uploads. It is still not clear what causes
this. The way to work around this is to set the ApacheMaxRequestsPerChild to a non-zero value.

6.3 Httpdapy handler

This handler is provided for people migrating from Httpdapy. To use it, add this to your.htaccess file:

PythonHandler mod_python.httpdapi

You will need to change one line in your code. Where it said

38 Chapter 6. Standard Handlers



import httpdapi

it now needs to say

from mod_python import httpdapi

If you were using authentication, in your .htaccess, instead of:

AuthPythonModule modulename

use

PythonOption authhandler modulename

NB: Make sure that the old httpdapi.py and apache.py are not in your python path anymore.

6.4 ZHandler

NOTE: This handler is being phased out in favor of thePublisherhandler described in Section 6.1.

This handler allows one to use the Z Object Publisher (formerly Bobo) with modpython. This gives you the power
of Zope Object Publishing along with the speed of modpython. It doesn’t get any better than this!

WHAT IS ZPublisher?

ZPublisher is a component of Zope. While I don’t profess at Zope itself as it seems to be designed for different type
of users than me, I do think that the ZPublisher provides an ingeniously simple way of writing WWW applications in
Python.

A quick example do demonstrate the power of ZPublisher.

Suppose you had a file called zhello.py like this:

"""A simple Bobo application"""

def sayHello( name = "World" ):
""" Sais Hello (this comment is required)"""
return "Hello %s!" % name

Notice it has one method defined in it. Through ZPublisher, that method can be invoked through the web via a URL
similar to this:

http://www.domain.tld/site/zhello/sayHello and
http://www.domain.tld/site/zhello/sayHello?name=Joe

Note how the query keyword ”name” converted to a keyword argument to the function.

If the above didn’t ”click” for you, go read the ZPublisher documentation at
http://classic.zope.org:8080/Documentation/Reference/ObjectPublishingIntro for a more in-depth explanation.

QUICK START

6.4. ZHandler 39



1. Download and install Zope.

2. Don’t start it. You’re only interested in ZPublisher, and in order for it to work, Zope doesn’t need to be running.

3. Pick a www directory where you want to use ZPublisher. For our purposes let’s imagine it is accessible via
http://www.domain.tld/site.

4. Make sure that the FollowSymLinks option is on for this directory in httpd.conf.

5. Make a symlink in this directory to the ZPublisher directory:

cd site
ln -s /usr/local/src/Zope-2.1.0-src/lib/python/ZPublisher .

6. Verify that it is correct:

ls -l
lrwxr-xr-x 1 uid group 53 Dec 13 12:15 ZPublisher -> /usr/local/src/Zope-2.1.0-src/lib/python/ZPublisher

7. Create an ‘.htaccess’ file with this in it:

SetHandler python-program
PythonHandler mod_python.zhandler
PythonDebug

8. Create an above mentioned zhello.py file.

9. Look at http://www.domain.tld/site/zhello/sayHello?name=Joe

Noteworthy:

This module automatically reloads modules just like any other modpython module. But modules that are im-
ported by your code will not get reloaded. There are ways around having to restart the server for script changes
to take effect. For example, let’s say you have a module called mycustomlib.py and you have a module that
imports it. If you make a changes to mycustomlib.py, you can force the changes to take effect by requesting
http://www.domain.tld/site/mycustomlib/. You will get a server error, but mycustomelib should get reloaded.

P.S.: ZPublisher is not Zope, but only part of it. As of right now, as far as I know, Zope will not work with modpython.
This is because of locking issues. Older versions of Zope had no locking, so different children of apache would corrupt
the database by trying to access it at the same time. Starting with version 2 Zope does have locking, however, it seems
that the first child locks the database without ever releasing it and after that no other process can access it.

If this is incorrect, and you can manage to get Zope to work without problems, please send me an e-mail and I will
correct this documentation.

40 Chapter 6. Standard Handlers



APPENDIX

A

Windows Installation

Notes originally created by Enrique Vaamondeevaamo@loquesea.com

Your mileage may vary with these instructions

You need to have the following packages properly installed and configured in your system:

• Python 1.5.2 or 2.0

• Apache 1.3

• Winzip 6.x or later.

You need to download both the modpython.dll and the modpython-x.tgz (where x is the version number) files from
the main page. Once you have all the things above mentioned we’re good to go.

1. Installing mod python libraries

• Use Winzip to extract the distribution file (modpython-x.tgz) into a temporary folder (i.eC:\temp ):

• NOTE: If Winzip shows this warning ”Archive contains one file, should Winzip decompress it to a tempo-
rary folder?” just click on Yes, the content of the file should appear in Winzip right after.

• Select all the files in Winzip and click on the Extract button, then type-in the path or just browse your way
to the temporary folder and click extract.

• Open your Windows Explorer and locate the temporary folder where you extracted the distribution file,
you should have a new folder in your temporary folder (C:\temp\mod python-x ).

• Move (or just drag & drop) the modpython-x folder into the Python lib folder (i.eC:\Program
Files\Python\lib ).

• Move the files in the folder lib inside the modpython folder (C:\Program
Files\Python\lib\mod python-x\lib\mod python ) to the C:\Program
Files\Python\lib\mod python folder. It’s safe to delete these folders we just emptied.

2. Integrating it with Apache

Once the distribution file is correctly extracted and later moved into the Python directory, it’s time to modify
your Apache configuration (httpd.conf) and integrate the server with modpython. These are a few steps we
must do first:

• Locate the file modpython.dll that you downloaded before and move it to Apache’s modules folder (i.e
C:\Program Files\Apache Group\Apache\modules ).

41



• Go to the Apache configuration folder (i.eC:\Program Files\Apache Group\Apache\conf\ )
and edit the httpd.conf file.

Add the following line in the section ”Dynamic Shared Object (DSO) Support” of the httpd.conf file:

LoadModule python_module modules/mod_python.dll

• Add the following lines in the section ScriptAlias and CGI of the httpd.conf:

<Directory "<Your Document Root>/python">
AddHandler python-program .py
PythonHandler mptest
PythonDebug on

</Directory>

NOTE: Replace the ¡Your Document Root¿ above with the Document Root you specified on the Docu-
mentRoot directive in the Apache’s httpd.conf file.

• Last, create a folder under your Document Root called python.

3. Testing

• Create a text file in the folder we created above and call it mptest.py (you can use Notepad for this).

• Insert the following lines and save the file (Make sure it gets saved with the .py extension):

from mod_python import apache

def handler(req):
req.content_type = "text/plain"
req.send_http_header()
req.write("Hello World!")
return apache.OK

• Make sure Apache is running (or launch it!) and then point your browser to the URL referring to the
mptest.py, you should see ”Hello World!”.

That’s it, you’re ready to roll!! If you don’t see the ”Hello World!” message, the next section is for you.

42 Appendix A. Windows Installation



APPENDIX

B

VMS installation

How to build and install mod_python on a VMS system

James Gessling <jgessling@yahoo.com> Fri, 3 Nov 2000

This assumes apache and python already installed successfully. I tested
Compaq’s CSWS version and 1.3.12 version’s of Apache. Python was 1.5.2 from
http://decus.decus.de/˜zessin/python.

0) download current release (wrote this for 2.6.3) from www.modpython.org.

1) create directories on a VMS system something like:

dka0:[mod_python.src.include]

2) put the .c files in src, the .h in include

3) Cut the script off the end of this file, save it in the src directory.
Edit as necessary and use it to compile and link mod_python.exe. Sorry,
I didn’t make much effort to make it very sophisticated.

4) Under your python lib directory, add a subdirectory [.mod_python].

For example: dka100:[python.python-1_5_2.lib]

5) Populate this subdirectory with mod_python .py files.
This allows for module importing like:

import mod_python.apache

which will find apache.py

43



6) Edit apache$root:[conf]httpd.conf to add line:

Include /apache$root/conf/mod_python.conf

(typically at the end of the file)

7) create apache$root:[conf]mod_python.conf containing:

############################################################################
##
# Mod_Python config
############################################################################
##
#
# Load the dynamic MOD_PYTHON module
# note pythonpath must be in python list literal format
#
LoadModule PYTHON_MODULE modules/mod_python.exe

<Directory />
AddHandler python-program .py
PythonHandler mptest
PythonDebug On
PythonPath

"[’/dka100/python/python-1_5_2/lib’,’/dka100/python/python-1_5_2/
vms/tools’,’/apache$root/htdocs/python’]"
</Directory>
#

8) put mod_python.exe into apache$common:[modules] so it can be found and
loaded. (create the directory if required).

9) fire up the web server with @sys$startup:apache$startup

10) Create a file mptest.py in a python subdirectory of your document root,
Typically apache$common:[htdocs.python]. Like this:

from mod_python import apache

def handler(req):
req.send_http_header()
req.write("Hello World!")
return apache.OK

( watch your indenting, as usual )

11) point browser to: http://node.place.com/python/mptest.py

12) enjoy "hello world"

44 Appendix B. VMS installation



$! build script, edit as needed to match the directories where your
$! files are located. Note /nowarning on cc, this is
$! required because of a #define clash between apache
$! and python. If not used, the .exe is marked as
$! having compilation warnings and won’t load. Apache
$! should already have been started to create apache$httpd_shr
$! logical name, Running the apache server with the -X flag
$! as an interactive process can be used for debugging if
$! necessary.
$ set noon
$ library/create mod_python_lib
$ cc :== cc /nowarning/prefix=all/include=(dka100:[python.python-1_5_2],-

dka100:[python.python-1_5_2.include],-
dka0:[],-
dka200:[apache.apache.src.include],-
dka200:[apache.apache.src.os.openvms])

$ cc _apachemodule
$ library/insert mod_python_lib _apachemodule
$ cc connobject
$ library/insert mod_python_lib connobject
$ cc mod_python
$ cc requestobject
$ library/insert mod_python_lib requestobject
$ cc serverobject
$ library/insert mod_python_lib serverobject
$ cc tableobject
$ library/insert mod_python_lib tableobject
$ cc util
$ library/insert mod_python_lib util
$! mod_python
$ link/share/sysexe mod_python,sys$input/opt
SYMBOL_VECTOR=(PYTHON_MODULE=DATA)
mod_python_lib/lib
apache$httpd_shr/share
dka100:[python.python-1_5_2.vms.o_alpha]python_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]modules_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]vms_macro_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]objects_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]parser_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]vms_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]modules_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]vms_macro_d00/lib
dka100:[python.python-1_5_2.vms.o_alpha]vms_d00/lib
case_sensitive=no
$!
$ exit

45



46



INDEX

Symbols
./configure, 4

--with-apache, 4
--with-apxs, 4
--with-python , 4

apache
module, 17

--with-apache
./configure, 4

--with-apxs
./configure, 4

--with-python
./configure, 4

A
add() (table method), 18
add common vars() (Request method), 18
add handler() (Request method), 18
allowed (Request attribute), 20
ap auth type (connection attribute), 22
apache (extension module),17
apxs, 4
args (Request attribute), 22
assbackwards (Request attribute), 20
AUTH TYPE, 22

B
base server (connection attribute), 22
boundary (Request attribute), 21
bytes sent (Request attribute), 20

C
CGI, 38
child num (connection attribute), 22
child terminate() (Request method), 19
clength (Request attribute), 21
connection

object, 22
connection (Request attribute), 20
content encoding (Request attribute), 21
content type (Request attribute), 21

D
defn line number (server attribute), 23
defn name (server attribute), 23
disposition (Field attribute), 25
disposition options (Field attribute), 26
dso

make targets, 4

E
environment variables

AUTH TYPE, 22
PATH INFO, 21
PATH, 4
QUERY ARGS, 22
REMOTE ADDR, 22
REMOTE HOST, 22
REMOTE IDENT, 22
REMOTE USER, 22
REQUEST METHOD, 20
SERVER NAME, 23
SERVER PORT, 23
SERVER PROTOCOL, 20

err headers out (Request attribute), 21
error fname (server attribute), 23

F
Field (class in util), 25
FieldStorage (class in util), 24
file (Field attribute), 25
filename

Field attribute, 25
Request attribute, 21

G
generic

handler, 9
get basic auth pw() (Request method), 19
get config() (Request method), 19
get dirs() (Request method), 19
get options() (Request method), 19
get remote host() (Request method), 19

47



H
handler, 10

generic, 9
handler (Request attribute), 21
header only (Request attribute), 20
headers in (Request attribute), 21
headers out (Request attribute), 21

I
install dso

make targets, 5
install py lib

make targets, 5
install static

make targets, 5
installation

UNIX, 3
VMS, 43
windows, 41

is virtual (server attribute), 23

K
keep alive max (server attribute), 23
keep alive timeout (server attribute), 23
keepalives (connection attribute), 22

L
libpython.a, 4
list (FieldStorage attribute), 25
local addr (connection attribute), 22
local host (connection attribute), 22
local ip (connection attribute), 22
log error() (in module apache), 17
loglevel (server attribute), 23

M
mailing list

mod python, 3
main (Request attribute), 20
make targets

dso, 4
install dso, 5
install py lib, 5
install static, 5
static, 4

make table() (in module apache), 18
method (Request attribute), 20
method number (Request attribute), 20
mod python

mailing list, 3
mod python.so, 5
module

apache, 17

mtime (Request attribute), 20

N
name (Field attribute), 25
next (Request attribute), 20
no cache (Request attribute), 21
no local copy (Request attribute), 21

O
obCallBack, 24
object

connection, 22
Request, 15
server, 22
table, 18

P
parse qs() (in module util), 26
parse qsl() (in module util), 26
PATH, 4
path (server attribute), 23
PATH INFO, 21
path info (Request attribute), 21
pathlen (server attribute), 23
port (server attribute), 23
prev (Request attribute), 20
proto num (Request attribute), 20
protocol (Request attribute), 20
Python*Handler Syntax, 27
PythonAccessHandler, 28
PythonAuthenHandler, 29
PythonAutoReload, 33
PythonCleanupHandler, 30
PythonDebug, 31
PythonEnablePdb, 31
PythonFixupHandler, 29
PythonHandler, 30
PythonHandlerModule, 33
PythonHeaderParserHandler, 28
PythonImport, 31
PythonInitHandler, 30
PythonInterpPerDirectory, 31
PythonInterpreter, 32
PythonLogHandler, 30
PythonOptimize, 33
PythonOption, 34
PythonPath, 34
PythonPostReadRequestHandler, 28
PythonPythonInterpPerDirective, 32
PythonTransHandler, 28
PythonTypeHandler, 29

Q
QUERY ARGS, 22

48 Index



R
range (Request attribute), 21
read() (Request method), 19
read body (Request attribute), 21
read chunked (Request attribute), 21
read length (Request attribute), 21
readline() (Request method), 19
register cleanup()

Request method, 19
server method, 23

remaining (Request attribute), 21
REMOTE ADDR, 22
remote addr (connection attribute), 22
REMOTE HOST, 22
remote host (connection attribute), 22
REMOTE IDENT, 22
remote ip (connection attribute), 22
remote logname (connection attribute), 22
REMOTE USER, 22
req, 15
Request, 18

object, 15
REQUEST METHOD, 20
request time (Request attribute), 20
RFC

RFC 1867, 26

S
send buffer size (server attribute), 23
send http header() (Request method), 19
sent body (Request attribute), 20
server

object, 22
server

connection attribute, 22
Request attribute, 20

server admin (server attribute), 23
server gid (server attribute), 23
server hostname (server attribute), 23
SERVER NAME, 23
SERVER PORT, 23
SERVER PROTOCOL, 20
server uid (server attribute), 23
srm confname (server attribute), 23
static

make targets, 4
status line (Request attribute), 20

T
table

object, 18
the request (Request attribute), 20
timeout (server attribute), 23

type (Field attribute), 25
type opyions (Field attribute), 25

U
UNIX

installation, 3
unparsed uri (Request attribute), 21
uri (Request attribute), 21
user (connection attribute), 22
util (extension module),24

V
value (Field attribute), 25
vlist validator (Request attribute), 21
VMS

installation, 43

W
windows

installation, 41
write() (Request method), 20

Index 49


	1 Introduction
	1.1 Performance
	1.2 Flexibility
	1.3 History

	2 Installation
	2.1 Prerequisites
	2.2 Compiling
	2.2.1 Running ./configure
	2.2.2 Running make

	2.3 Installing
	2.3.1 Running make install
	2.3.2 Configuring Apache

	2.4 Testing
	2.5 Troubleshooting

	3 Tutorial
	3.1 Quick Overview of how Apache Handles Requests
	3.2 So what Exactly does Mod-python do?
	3.3 Now something More Complicated - Authentication
	3.4 Publisher Handler Makes it Easy

	4 Python API
	4.1 Multiple Interpreters
	4.2 Overview of a Handler
	4.3 apache -- Access to Apache Internals.
	4.3.1 Table Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}table)
	4.3.2 Request Object
	Request Methods
	Request Members

	4.3.3 Connection Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}conn)
	Connection Members

	4.3.4 Server Object (mpprotect unhbox voidb@x kern .06emvbox {hrule width.55em}server)
	Server Methods
	Server Members

	4.3.5 Debugging
	4.3.6 Internal Callback Object

	4.4 util -- Miscellaneous Utilities
	4.4.1 FieldStorage class
	Field class

	4.4.2 Other functions


	5 Apache Configuration Directives
	5.1 Handlers
	5.1.1 Python*Handler Directive Syntax
	5.1.2 PythonPostReadRequestHandler
	5.1.3 PythonTransHandler
	5.1.4 PythonHeaderParserHandler
	5.1.5 PythonAccessHandler
	5.1.6 PythonAuthenHandler
	5.1.7 PythonTypeHandler
	5.1.8 PythonFixupHandler
	5.1.9 PythonHandler
	5.1.10 PythonInitHandler
	5.1.11 PythonLogHandler
	5.1.12 PythonCleanupHandler

	5.2 Other Directives
	5.2.1 PythonEnablePdb
	5.2.2 PythonDebug
	5.2.3 PythonImport
	5.2.4 PythonInterpPerDirectory
	5.2.5 PythonInterpPerDirective
	5.2.6 PythonInterpreter
	5.2.7 PythonHandlerModule
	5.2.8 PythonAutoReload
	5.2.9 PythonOptimize
	5.2.10 PythonOption
	5.2.11 PythonPath


	6 Standard Handlers
	6.1 Publisher Handler
	6.1.1 Introduction
	6.1.2 The Publishing Algorithm
	Traversal
	Argument Matching and Invocation
	Authentication

	6.1.3 Form Data

	6.2 CGI Handler
	6.3 Httpdapy handler
	6.4 ZHandler

	A Windows Installation
	B VMS installation
	Index

